Linchao Wang, Xin Liang, Xuyang Shi, Jianyong Han, Yang Chen, Wan Zhang
{"title":"液氮环境下岩石力学性能研究","authors":"Linchao Wang, Xin Liang, Xuyang Shi, Jianyong Han, Yang Chen, Wan Zhang","doi":"10.1155/2023/4761786","DOIUrl":null,"url":null,"abstract":"In order to promote sustainable energy development and reduce the impact of fossil fuels on the environment, it is crucial to strengthen the development and utilization of clean and renewable geothermal energy. Liquid nitrogen fracturing, as an emerging waterless fracturing technology, has outstanding advantages in rock fracturing effect and thermal exchange ability with hot dry rock and is more environmentally friendly. In order to evaluate the influence of liquid nitrogen on the mechanical properties, acoustic emission characteristics, and cross-sectional crack propagation characteristics of granite at different initial temperatures, this paper carried out three-point bending tests and acoustic emission detection on granite treated by high-temperature heating and liquid nitrogen cooling. Finally, based on the cross-sectional scanning test, the expansion characteristics of microcracks in granite were analyzed. The results show that the higher the initial temperature of granite, the stronger the cold impact of liquid nitrogen on granite, and the faster the rock’s mechanical performance declines. The acoustic emission ringing count is closely related to the development of microcracks in granite, and as the initial temperature of granite increases, the more ringing counts there are, indicating that the huge temperature difference induces more microcracks inside the rock. In addition, the cold impact of liquid nitrogen can effectively promote the fracturing of granite. After liquid nitrogen treatment, the fractal dimension of the granite cross-section increases, the shape of the cross-section becomes rough, and many micropores appear. This study can provide a scientific basis for the engineering application of liquid nitrogen fracturing technology.","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"14 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Rock Mechanical Properties under Liquid Nitrogen Environment\",\"authors\":\"Linchao Wang, Xin Liang, Xuyang Shi, Jianyong Han, Yang Chen, Wan Zhang\",\"doi\":\"10.1155/2023/4761786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to promote sustainable energy development and reduce the impact of fossil fuels on the environment, it is crucial to strengthen the development and utilization of clean and renewable geothermal energy. Liquid nitrogen fracturing, as an emerging waterless fracturing technology, has outstanding advantages in rock fracturing effect and thermal exchange ability with hot dry rock and is more environmentally friendly. In order to evaluate the influence of liquid nitrogen on the mechanical properties, acoustic emission characteristics, and cross-sectional crack propagation characteristics of granite at different initial temperatures, this paper carried out three-point bending tests and acoustic emission detection on granite treated by high-temperature heating and liquid nitrogen cooling. Finally, based on the cross-sectional scanning test, the expansion characteristics of microcracks in granite were analyzed. The results show that the higher the initial temperature of granite, the stronger the cold impact of liquid nitrogen on granite, and the faster the rock’s mechanical performance declines. The acoustic emission ringing count is closely related to the development of microcracks in granite, and as the initial temperature of granite increases, the more ringing counts there are, indicating that the huge temperature difference induces more microcracks inside the rock. In addition, the cold impact of liquid nitrogen can effectively promote the fracturing of granite. After liquid nitrogen treatment, the fractal dimension of the granite cross-section increases, the shape of the cross-section becomes rough, and many micropores appear. This study can provide a scientific basis for the engineering application of liquid nitrogen fracturing technology.\",\"PeriodicalId\":12512,\"journal\":{\"name\":\"Geofluids\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofluids\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4761786\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofluids","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2023/4761786","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Investigation of Rock Mechanical Properties under Liquid Nitrogen Environment
In order to promote sustainable energy development and reduce the impact of fossil fuels on the environment, it is crucial to strengthen the development and utilization of clean and renewable geothermal energy. Liquid nitrogen fracturing, as an emerging waterless fracturing technology, has outstanding advantages in rock fracturing effect and thermal exchange ability with hot dry rock and is more environmentally friendly. In order to evaluate the influence of liquid nitrogen on the mechanical properties, acoustic emission characteristics, and cross-sectional crack propagation characteristics of granite at different initial temperatures, this paper carried out three-point bending tests and acoustic emission detection on granite treated by high-temperature heating and liquid nitrogen cooling. Finally, based on the cross-sectional scanning test, the expansion characteristics of microcracks in granite were analyzed. The results show that the higher the initial temperature of granite, the stronger the cold impact of liquid nitrogen on granite, and the faster the rock’s mechanical performance declines. The acoustic emission ringing count is closely related to the development of microcracks in granite, and as the initial temperature of granite increases, the more ringing counts there are, indicating that the huge temperature difference induces more microcracks inside the rock. In addition, the cold impact of liquid nitrogen can effectively promote the fracturing of granite. After liquid nitrogen treatment, the fractal dimension of the granite cross-section increases, the shape of the cross-section becomes rough, and many micropores appear. This study can provide a scientific basis for the engineering application of liquid nitrogen fracturing technology.
期刊介绍:
Geofluids is a peer-reviewed, Open Access journal that provides a forum for original research and reviews relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust. Its explicit aim is to disseminate ideas across the range of sub-disciplines in which Geofluids research is carried out. To this end, authors are encouraged to stress the transdisciplinary relevance and international ramifications of their research. Authors are also encouraged to make their work as accessible as possible to readers from other sub-disciplines.
Geofluids emphasizes chemical, microbial, and physical aspects of subsurface fluids throughout the Earth’s crust. Geofluids spans studies of groundwater, terrestrial or submarine geothermal fluids, basinal brines, petroleum, metamorphic waters or magmatic fluids.