{"title":"广义泊松差分自回归过程","authors":"","doi":"10.1016/j.ijforecast.2023.11.009","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a novel stochastic process with signed integer values. Its autoregressive dynamics effectively captures persistence in conditional moments, rendering it a valuable feature for forecasting applications. The increments follow a Generalized Poisson distribution, capable of accommodating over- and under-dispersion in the conditional distribution, thereby extending standard Poisson difference models. We derive key properties of the process, including stationarity conditions, the stationary distribution, and conditional and unconditional moments, which prove essential for accurate forecasting. We provide a Bayesian inference framework with an efficient posterior approximation based on Markov Chain Monte Carlo. This approach seamlessly incorporates inherent parameter uncertainty into predictive distributions. The effectiveness of the proposed model is demonstrated through applications to benchmark datasets on car accidents and an original dataset on cyber threats, highlighting its superior fitting and forecasting capabilities compared to standard Poisson models.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001310/pdfft?md5=4c712880186f559616263672436b5004&pid=1-s2.0-S0169207023001310-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalized Poisson difference autoregressive processes\",\"authors\":\"\",\"doi\":\"10.1016/j.ijforecast.2023.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a novel stochastic process with signed integer values. Its autoregressive dynamics effectively captures persistence in conditional moments, rendering it a valuable feature for forecasting applications. The increments follow a Generalized Poisson distribution, capable of accommodating over- and under-dispersion in the conditional distribution, thereby extending standard Poisson difference models. We derive key properties of the process, including stationarity conditions, the stationary distribution, and conditional and unconditional moments, which prove essential for accurate forecasting. We provide a Bayesian inference framework with an efficient posterior approximation based on Markov Chain Monte Carlo. This approach seamlessly incorporates inherent parameter uncertainty into predictive distributions. The effectiveness of the proposed model is demonstrated through applications to benchmark datasets on car accidents and an original dataset on cyber threats, highlighting its superior fitting and forecasting capabilities compared to standard Poisson models.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169207023001310/pdfft?md5=4c712880186f559616263672436b5004&pid=1-s2.0-S0169207023001310-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207023001310\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023001310","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
This paper introduces a novel stochastic process with signed integer values. Its autoregressive dynamics effectively captures persistence in conditional moments, rendering it a valuable feature for forecasting applications. The increments follow a Generalized Poisson distribution, capable of accommodating over- and under-dispersion in the conditional distribution, thereby extending standard Poisson difference models. We derive key properties of the process, including stationarity conditions, the stationary distribution, and conditional and unconditional moments, which prove essential for accurate forecasting. We provide a Bayesian inference framework with an efficient posterior approximation based on Markov Chain Monte Carlo. This approach seamlessly incorporates inherent parameter uncertainty into predictive distributions. The effectiveness of the proposed model is demonstrated through applications to benchmark datasets on car accidents and an original dataset on cyber threats, highlighting its superior fitting and forecasting capabilities compared to standard Poisson models.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.