{"title":"在全基因组关联研究中使用贝叶斯变异尖峰和板块模型寻找双相情感障碍的相关基因位点","authors":"Maryam Kazemi Naeini, Mahdi Akbarzadeh, Iraj Kazemi, Doug Speed, Sayed Mohsen Hosseini","doi":"10.1111/ahg.12538","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>The genome-wide association studies (GWAS) analysis, the most successful technique for discovering disease-related genetic variation, has some statistical concerns, including multiple testing, the correlation among variants (single-nucleotide polymorphisms) based on linkage disequilibrium and omitting the important variants when fitting the model with just one variant. To eliminate these problems in a small sample-size study, we used a sparse Bayesian learning model for finding bipolar disorder (BD) genetic variants.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>This study used the Wellcome Trust Case Control Consortium data set, including 1998 BD cases and 1500 control samples, and after quality control, 380,628 variants were analysed. In this GWAS, a Bayesian logistic model with hierarchical shrinkage spike and slab priors was used, with all variants considered simultaneously in one model. In order to decrease the computational burden, an alternative inferential method, Bayesian variational inference, has been used.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Thirteen variants were selected as associated with BD. The three of them (rs7572953, rs1378850 and rs4148944) were reported in previous GWAS. Eight of which were related to hemogram parameters, such as lymphocyte percentage, plateletcrit and haemoglobin concentration. Among selected related genes, GABPA, ELF3 and JAM2 were enriched in the platelet-derived growth factor pathway. These three genes, along with APP, ARL8A, CDH23 and GPR37L1, could be differential diagnostic variants for BD.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>By reducing the statistical restrictions of GWAS analysis, the application of the Bayesian variational spike and slab models can offer insight into the genetic link with BD even with a small sample size. To uncover related variations with other traits, this model needs to be further examined.</p>\n </section>\n </div>","PeriodicalId":8085,"journal":{"name":"Annals of Human Genetics","volume":"88 3","pages":"212-246"},"PeriodicalIF":1.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using the Bayesian variational spike and slab model in a genome-wide association study for finding associated loci with bipolar disorder\",\"authors\":\"Maryam Kazemi Naeini, Mahdi Akbarzadeh, Iraj Kazemi, Doug Speed, Sayed Mohsen Hosseini\",\"doi\":\"10.1111/ahg.12538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>The genome-wide association studies (GWAS) analysis, the most successful technique for discovering disease-related genetic variation, has some statistical concerns, including multiple testing, the correlation among variants (single-nucleotide polymorphisms) based on linkage disequilibrium and omitting the important variants when fitting the model with just one variant. To eliminate these problems in a small sample-size study, we used a sparse Bayesian learning model for finding bipolar disorder (BD) genetic variants.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>This study used the Wellcome Trust Case Control Consortium data set, including 1998 BD cases and 1500 control samples, and after quality control, 380,628 variants were analysed. In this GWAS, a Bayesian logistic model with hierarchical shrinkage spike and slab priors was used, with all variants considered simultaneously in one model. In order to decrease the computational burden, an alternative inferential method, Bayesian variational inference, has been used.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Thirteen variants were selected as associated with BD. The three of them (rs7572953, rs1378850 and rs4148944) were reported in previous GWAS. Eight of which were related to hemogram parameters, such as lymphocyte percentage, plateletcrit and haemoglobin concentration. Among selected related genes, GABPA, ELF3 and JAM2 were enriched in the platelet-derived growth factor pathway. These three genes, along with APP, ARL8A, CDH23 and GPR37L1, could be differential diagnostic variants for BD.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>By reducing the statistical restrictions of GWAS analysis, the application of the Bayesian variational spike and slab models can offer insight into the genetic link with BD even with a small sample size. To uncover related variations with other traits, this model needs to be further examined.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8085,\"journal\":{\"name\":\"Annals of Human Genetics\",\"volume\":\"88 3\",\"pages\":\"212-246\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ahg.12538\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ahg.12538","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Using the Bayesian variational spike and slab model in a genome-wide association study for finding associated loci with bipolar disorder
Objective
The genome-wide association studies (GWAS) analysis, the most successful technique for discovering disease-related genetic variation, has some statistical concerns, including multiple testing, the correlation among variants (single-nucleotide polymorphisms) based on linkage disequilibrium and omitting the important variants when fitting the model with just one variant. To eliminate these problems in a small sample-size study, we used a sparse Bayesian learning model for finding bipolar disorder (BD) genetic variants.
Methods
This study used the Wellcome Trust Case Control Consortium data set, including 1998 BD cases and 1500 control samples, and after quality control, 380,628 variants were analysed. In this GWAS, a Bayesian logistic model with hierarchical shrinkage spike and slab priors was used, with all variants considered simultaneously in one model. In order to decrease the computational burden, an alternative inferential method, Bayesian variational inference, has been used.
Results
Thirteen variants were selected as associated with BD. The three of them (rs7572953, rs1378850 and rs4148944) were reported in previous GWAS. Eight of which were related to hemogram parameters, such as lymphocyte percentage, plateletcrit and haemoglobin concentration. Among selected related genes, GABPA, ELF3 and JAM2 were enriched in the platelet-derived growth factor pathway. These three genes, along with APP, ARL8A, CDH23 and GPR37L1, could be differential diagnostic variants for BD.
Conclusions
By reducing the statistical restrictions of GWAS analysis, the application of the Bayesian variational spike and slab models can offer insight into the genetic link with BD even with a small sample size. To uncover related variations with other traits, this model needs to be further examined.
期刊介绍:
Annals of Human Genetics publishes material directly concerned with human genetics or the application of scientific principles and techniques to any aspect of human inheritance. Papers that describe work on other species that may be relevant to human genetics will also be considered. Mathematical models should include examples of application to data where possible.
Authors are welcome to submit Supporting Information, such as data sets or additional figures or tables, that will not be published in the print edition of the journal, but which will be viewable via the online edition and stored on the website.