评估事件相关电位研究中人工痕迹校正和剔除的有效性。

Psychophysiology Pub Date : 2024-05-01 Epub Date: 2024-01-02 DOI:10.1111/psyp.14511
Guanghui Zhang, David R Garrett, Aaron M Simmons, John E Kiat, Steven J Luck
{"title":"评估事件相关电位研究中人工痕迹校正和剔除的有效性。","authors":"Guanghui Zhang, David R Garrett, Aaron M Simmons, John E Kiat, Steven J Luck","doi":"10.1111/psyp.14511","DOIUrl":null,"url":null,"abstract":"<p><p>Eyeblinks and other large artifacts can create two major problems in event-related potential (ERP) research, namely confounds and increased noise. Here, we developed a method for assessing the effectiveness of artifact correction and rejection methods in minimizing these two problems. We then used this method to assess a common artifact minimization approach, in which independent component analysis (ICA) is used to correct ocular artifacts, and artifact rejection is used to reject trials with extreme values resulting from other sources (e.g., movement artifacts). This approach was applied to data from five common ERP components (P3b, N400, N170, mismatch negativity, and error-related negativity). Four common scoring methods (mean amplitude, peak amplitude, peak latency, and 50% area latency) were examined for each component. We found that eyeblinks differed systematically across experimental conditions for several of the components. We also found that artifact correction was reasonably effective at minimizing these confounds, although it did not usually eliminate them completely. In addition, we found that the rejection of trials with extreme voltage values was effective at reducing noise, with the benefits of eliminating these trials outweighing the reduced number of trials available for averaging. For researchers who are analyzing similar ERP components and participant populations, this combination of artifact correction and rejection approaches should minimize artifact-related confounds and lead to improved data quality. Researchers who are analyzing other components or participant populations can use the method developed in this study to determine which artifact minimization approaches are effective in their data.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021170/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating the effectiveness of artifact correction and rejection in event-related potential research.\",\"authors\":\"Guanghui Zhang, David R Garrett, Aaron M Simmons, John E Kiat, Steven J Luck\",\"doi\":\"10.1111/psyp.14511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eyeblinks and other large artifacts can create two major problems in event-related potential (ERP) research, namely confounds and increased noise. Here, we developed a method for assessing the effectiveness of artifact correction and rejection methods in minimizing these two problems. We then used this method to assess a common artifact minimization approach, in which independent component analysis (ICA) is used to correct ocular artifacts, and artifact rejection is used to reject trials with extreme values resulting from other sources (e.g., movement artifacts). This approach was applied to data from five common ERP components (P3b, N400, N170, mismatch negativity, and error-related negativity). Four common scoring methods (mean amplitude, peak amplitude, peak latency, and 50% area latency) were examined for each component. We found that eyeblinks differed systematically across experimental conditions for several of the components. We also found that artifact correction was reasonably effective at minimizing these confounds, although it did not usually eliminate them completely. In addition, we found that the rejection of trials with extreme voltage values was effective at reducing noise, with the benefits of eliminating these trials outweighing the reduced number of trials available for averaging. For researchers who are analyzing similar ERP components and participant populations, this combination of artifact correction and rejection approaches should minimize artifact-related confounds and lead to improved data quality. Researchers who are analyzing other components or participant populations can use the method developed in this study to determine which artifact minimization approaches are effective in their data.</p>\",\"PeriodicalId\":94182,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021170/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/psyp.14511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在事件相关电位(ERP)研究中,眼动和其他大型伪影会造成两个主要问题,即混淆和噪声增加。在此,我们开发了一种方法,用于评估伪影校正和剔除方法在最小化这两个问题方面的有效性。然后,我们用这种方法评估了一种常见的伪影最小化方法,其中独立成分分析(ICA)用于校正眼部伪影,而伪影剔除则用于剔除其他来源(如运动伪影)造成的具有极端值的试验。这种方法适用于五个常见的 ERP 成分(P3b、N400、N170、错配负性和错误相关负性)的数据。我们对每个成分的四种常见评分方法(平均振幅、峰值振幅、峰值潜伏期和 50% 区域潜伏期)进行了研究。我们发现,在不同的实验条件下,眼动的几个成分存在系统性差异。我们还发现,伪影校正在最大限度地减少这些混杂因素方面相当有效,尽管它通常并不能完全消除这些混杂因素。此外,我们还发现,剔除具有极端电压值的试验能有效减少噪音,剔除这些试验的益处超过了可用于平均的试验数量的减少。对于正在分析类似 ERP 成分和受试者群体的研究人员来说,将伪影校正和剔除方法结合起来,应能最大限度地减少与伪影相关的混杂因素,从而提高数据质量。正在分析其他成分或参与者群体的研究人员可以使用本研究中开发的方法来确定哪些伪影最小化方法对其数据有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating the effectiveness of artifact correction and rejection in event-related potential research.

Eyeblinks and other large artifacts can create two major problems in event-related potential (ERP) research, namely confounds and increased noise. Here, we developed a method for assessing the effectiveness of artifact correction and rejection methods in minimizing these two problems. We then used this method to assess a common artifact minimization approach, in which independent component analysis (ICA) is used to correct ocular artifacts, and artifact rejection is used to reject trials with extreme values resulting from other sources (e.g., movement artifacts). This approach was applied to data from five common ERP components (P3b, N400, N170, mismatch negativity, and error-related negativity). Four common scoring methods (mean amplitude, peak amplitude, peak latency, and 50% area latency) were examined for each component. We found that eyeblinks differed systematically across experimental conditions for several of the components. We also found that artifact correction was reasonably effective at minimizing these confounds, although it did not usually eliminate them completely. In addition, we found that the rejection of trials with extreme voltage values was effective at reducing noise, with the benefits of eliminating these trials outweighing the reduced number of trials available for averaging. For researchers who are analyzing similar ERP components and participant populations, this combination of artifact correction and rejection approaches should minimize artifact-related confounds and lead to improved data quality. Researchers who are analyzing other components or participant populations can use the method developed in this study to determine which artifact minimization approaches are effective in their data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How effort-based self-interest motivation shapes altruistic donation behavior and brain responses. Beyond peaks and troughs: Multiplexed performance monitoring signals in the EEG. Reduced reward responsiveness and depression vulnerability: Consideration of social contexts and implications for intervention. Moving toward reality: Electrocortical reactivity to naturalistic multimodal emotional videos. Mapping the routes of perception: Hemispheric asymmetries in signal propagation dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1