{"title":"新型重组克隆 VasSF 在抗中性粒细胞胞浆抗体相关性血管炎小鼠模型中的疗效增强。","authors":"Minako Koura, Yosuke Kameoka, Fukuko Kishi, Yoshio Yamakawa, Fuyu Ito, Ryuichi Sugamata, Yuko Doi, Kazuko Uno, Toshinori Nakayama, Takashi Miki, Hiroshi Nakajima, Kazuo Suzuki, Osamu Suzuki","doi":"10.1093/cei/uxad140","DOIUrl":null,"url":null,"abstract":"<p><p>Based on the efficacy of intravenous immunoglobulin (IVIg) for the treatment of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), we developed a recombinant single-chain-fragment variable clone, VasSF, therapeutic against AAV in a mouse model (SCG/Kj mice). VasSF is thought to bind to vasculitis-associated apolipoprotein A-II (APOA2) as a target molecule. VasSF is a promising new drug against AAV, but difficulties in the yield and purification of VasSF remain unresolved. We produced monomers of new VasSF molecules by modifying the plasmid structure for VasSF expression and simplifying the purification method using high-performance liquid chromatography. We compared the therapeutic effects between 5-day continuous administration of the monomers, as in IVIg treatment, and single shots of 5-day-equivalent doses. We also evaluated the life-prolonging effect of the single-shot treatment. Two-dimensional western blots were used to examine the binding of VasSF to APOA2. Our improved manufacturing method resulted in a 100-fold higher yield of VasSF than in our previous study. Monomerization of VasSF stabilized its efficacy. Single shots of a small amount (1/80 000 of IVIg) produced sufficient therapeutic effects, including decreased glomerular crescent formation, a decreasing trend of serum ANCA against myeloperoxidase (MPO-ANCA), decreases in multiple proinflammatory cytokines, and a trend toward prolonged survival. Two-dimensional western blots confirmed the binding of VasSF to APOA2. The newly produced pure VasSF monomers are stable and therapeutic for AAV with a single low-dose injection, possibly by removing vasculitis-associated APOA2. Thus, the new VasSF described herein is a promising drug against AAV.</p>","PeriodicalId":10268,"journal":{"name":"Clinical and experimental immunology","volume":" ","pages":"55-67"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10929700/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced efficacy of the novel recombinant clone VasSF in a mouse model of antineutrophil cytoplasmic antibody-associated vasculitis.\",\"authors\":\"Minako Koura, Yosuke Kameoka, Fukuko Kishi, Yoshio Yamakawa, Fuyu Ito, Ryuichi Sugamata, Yuko Doi, Kazuko Uno, Toshinori Nakayama, Takashi Miki, Hiroshi Nakajima, Kazuo Suzuki, Osamu Suzuki\",\"doi\":\"10.1093/cei/uxad140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Based on the efficacy of intravenous immunoglobulin (IVIg) for the treatment of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), we developed a recombinant single-chain-fragment variable clone, VasSF, therapeutic against AAV in a mouse model (SCG/Kj mice). VasSF is thought to bind to vasculitis-associated apolipoprotein A-II (APOA2) as a target molecule. VasSF is a promising new drug against AAV, but difficulties in the yield and purification of VasSF remain unresolved. We produced monomers of new VasSF molecules by modifying the plasmid structure for VasSF expression and simplifying the purification method using high-performance liquid chromatography. We compared the therapeutic effects between 5-day continuous administration of the monomers, as in IVIg treatment, and single shots of 5-day-equivalent doses. We also evaluated the life-prolonging effect of the single-shot treatment. Two-dimensional western blots were used to examine the binding of VasSF to APOA2. Our improved manufacturing method resulted in a 100-fold higher yield of VasSF than in our previous study. Monomerization of VasSF stabilized its efficacy. Single shots of a small amount (1/80 000 of IVIg) produced sufficient therapeutic effects, including decreased glomerular crescent formation, a decreasing trend of serum ANCA against myeloperoxidase (MPO-ANCA), decreases in multiple proinflammatory cytokines, and a trend toward prolonged survival. Two-dimensional western blots confirmed the binding of VasSF to APOA2. The newly produced pure VasSF monomers are stable and therapeutic for AAV with a single low-dose injection, possibly by removing vasculitis-associated APOA2. Thus, the new VasSF described herein is a promising drug against AAV.</p>\",\"PeriodicalId\":10268,\"journal\":{\"name\":\"Clinical and experimental immunology\",\"volume\":\" \",\"pages\":\"55-67\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10929700/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and experimental immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cei/uxad140\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and experimental immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cei/uxad140","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Enhanced efficacy of the novel recombinant clone VasSF in a mouse model of antineutrophil cytoplasmic antibody-associated vasculitis.
Based on the efficacy of intravenous immunoglobulin (IVIg) for the treatment of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), we developed a recombinant single-chain-fragment variable clone, VasSF, therapeutic against AAV in a mouse model (SCG/Kj mice). VasSF is thought to bind to vasculitis-associated apolipoprotein A-II (APOA2) as a target molecule. VasSF is a promising new drug against AAV, but difficulties in the yield and purification of VasSF remain unresolved. We produced monomers of new VasSF molecules by modifying the plasmid structure for VasSF expression and simplifying the purification method using high-performance liquid chromatography. We compared the therapeutic effects between 5-day continuous administration of the monomers, as in IVIg treatment, and single shots of 5-day-equivalent doses. We also evaluated the life-prolonging effect of the single-shot treatment. Two-dimensional western blots were used to examine the binding of VasSF to APOA2. Our improved manufacturing method resulted in a 100-fold higher yield of VasSF than in our previous study. Monomerization of VasSF stabilized its efficacy. Single shots of a small amount (1/80 000 of IVIg) produced sufficient therapeutic effects, including decreased glomerular crescent formation, a decreasing trend of serum ANCA against myeloperoxidase (MPO-ANCA), decreases in multiple proinflammatory cytokines, and a trend toward prolonged survival. Two-dimensional western blots confirmed the binding of VasSF to APOA2. The newly produced pure VasSF monomers are stable and therapeutic for AAV with a single low-dose injection, possibly by removing vasculitis-associated APOA2. Thus, the new VasSF described herein is a promising drug against AAV.
期刊介绍:
Clinical & Experimental Immunology (established in 1966) is an authoritative international journal publishing high-quality research studies in translational and clinical immunology that have the potential to transform our understanding of the immunopathology of human disease and/or change clinical practice.
The journal is focused on translational and clinical immunology and is among the foremost journals in this field, attracting high-quality papers from across the world. Translation is viewed as a process of applying ideas, insights and discoveries generated through scientific studies to the treatment, prevention or diagnosis of human disease. Clinical immunology has evolved as a field to encompass the application of state-of-the-art technologies such as next-generation sequencing, metagenomics and high-dimensional phenotyping to understand mechanisms that govern the outcomes of clinical trials.