Hemalatha Karnan, D Uma Maheswari, D Priyadharshini, S Laushya, T K Thivyaprakas
{"title":"利用统计方法检测心算任务中的认知。","authors":"Hemalatha Karnan, D Uma Maheswari, D Priyadharshini, S Laushya, T K Thivyaprakas","doi":"10.1080/10255842.2023.2298362","DOIUrl":null,"url":null,"abstract":"<p><p>The handheld diagnosis and analysis are highly dependent on the physiological data in the clinical sector. Detection of the defect in the neuronal-assisted activity raises the challenge to the prevailing treatment that benefits from machine learning approaches. The congregated EEG data is then utilized in design of learning applications to develop a model that classifies intricate EEG patterns into active and inactive segments. During arithmetic problem-solving EEG signal acquired from frontal lobe contributes for intelligence detection. The low intricate statistical parameters help in understanding the objective. The mean of the segmented samples and standard deviation are the features extracted for model building. The feature selection is handled using correlation and Fisher score between {Fp1 and F8} and priority ranking of the regions with enhanced activity are selected for the classifier models to the training net. The R-studio platform is used to classify the data based on active and inactive liability. The radial basis function kernel for support vector machine (SVM) is deployed to substantiate the proposed methodology. The vulnerable regions F1 and F8 for arithmetic activity can be visualized from the correlation fit performed between regions. Using SVM classifier sensitivity of 92.5% is obtained for the selected features. A wide range of clinical problems can be diagnosed using this model and used for brain-computer interface.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"558-571"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognizance detection during mental arithmetic task using statistical approach.\",\"authors\":\"Hemalatha Karnan, D Uma Maheswari, D Priyadharshini, S Laushya, T K Thivyaprakas\",\"doi\":\"10.1080/10255842.2023.2298362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The handheld diagnosis and analysis are highly dependent on the physiological data in the clinical sector. Detection of the defect in the neuronal-assisted activity raises the challenge to the prevailing treatment that benefits from machine learning approaches. The congregated EEG data is then utilized in design of learning applications to develop a model that classifies intricate EEG patterns into active and inactive segments. During arithmetic problem-solving EEG signal acquired from frontal lobe contributes for intelligence detection. The low intricate statistical parameters help in understanding the objective. The mean of the segmented samples and standard deviation are the features extracted for model building. The feature selection is handled using correlation and Fisher score between {Fp1 and F8} and priority ranking of the regions with enhanced activity are selected for the classifier models to the training net. The R-studio platform is used to classify the data based on active and inactive liability. The radial basis function kernel for support vector machine (SVM) is deployed to substantiate the proposed methodology. The vulnerable regions F1 and F8 for arithmetic activity can be visualized from the correlation fit performed between regions. Using SVM classifier sensitivity of 92.5% is obtained for the selected features. A wide range of clinical problems can be diagnosed using this model and used for brain-computer interface.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"558-571\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2298362\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2298362","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Cognizance detection during mental arithmetic task using statistical approach.
The handheld diagnosis and analysis are highly dependent on the physiological data in the clinical sector. Detection of the defect in the neuronal-assisted activity raises the challenge to the prevailing treatment that benefits from machine learning approaches. The congregated EEG data is then utilized in design of learning applications to develop a model that classifies intricate EEG patterns into active and inactive segments. During arithmetic problem-solving EEG signal acquired from frontal lobe contributes for intelligence detection. The low intricate statistical parameters help in understanding the objective. The mean of the segmented samples and standard deviation are the features extracted for model building. The feature selection is handled using correlation and Fisher score between {Fp1 and F8} and priority ranking of the regions with enhanced activity are selected for the classifier models to the training net. The R-studio platform is used to classify the data based on active and inactive liability. The radial basis function kernel for support vector machine (SVM) is deployed to substantiate the proposed methodology. The vulnerable regions F1 and F8 for arithmetic activity can be visualized from the correlation fit performed between regions. Using SVM classifier sensitivity of 92.5% is obtained for the selected features. A wide range of clinical problems can be diagnosed using this model and used for brain-computer interface.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.