Alexander Domoshnitsky, Elnatan Berenson, Shai Levi, Elena Litsyn
{"title":"有延迟的一类一阶微分方程的 Floquet 理论和稳定性","authors":"Alexander Domoshnitsky, Elnatan Berenson, Shai Levi, Elena Litsyn","doi":"10.1515/gmj-2023-2119","DOIUrl":null,"url":null,"abstract":"A version of the Floquet theory for first order delay differential equations is proposed. Formula of solutions representation is obtained. On this basis, the stability of first order delay differential equations is studied. An analogue of the classical integral Lyapunov–Zhukovskii test of stability is proved. New, in comparison with all known, tests of the exponential stability are obtained on the basis of the Floquet theory. A possibility to achieve the exponential stability is connected with oscillation of solutions.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"25 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Floquet theory and stability for a class of first order differential equations with delays\",\"authors\":\"Alexander Domoshnitsky, Elnatan Berenson, Shai Levi, Elena Litsyn\",\"doi\":\"10.1515/gmj-2023-2119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A version of the Floquet theory for first order delay differential equations is proposed. Formula of solutions representation is obtained. On this basis, the stability of first order delay differential equations is studied. An analogue of the classical integral Lyapunov–Zhukovskii test of stability is proved. New, in comparison with all known, tests of the exponential stability are obtained on the basis of the Floquet theory. A possibility to achieve the exponential stability is connected with oscillation of solutions.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2119\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2119","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Floquet theory and stability for a class of first order differential equations with delays
A version of the Floquet theory for first order delay differential equations is proposed. Formula of solutions representation is obtained. On this basis, the stability of first order delay differential equations is studied. An analogue of the classical integral Lyapunov–Zhukovskii test of stability is proved. New, in comparison with all known, tests of the exponential stability are obtained on the basis of the Floquet theory. A possibility to achieve the exponential stability is connected with oscillation of solutions.
期刊介绍:
The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.