机器学习过程中的转角案例

Florian Heidecker, Maarten Bieshaar, Bernhard Sick
{"title":"机器学习过程中的转角案例","authors":"Florian Heidecker, Maarten Bieshaar, Bernhard Sick","doi":"10.1186/s42467-023-00015-y","DOIUrl":null,"url":null,"abstract":"Applications using machine learning (ML), such as highly autonomous driving, depend highly on the performance of the ML model. The data amount and quality used for model training and validation are crucial. If the model cannot detect and interpret a new, rare, or perhaps dangerous situation, often referred to as a corner case, we will likely blame the data for not being good enough or too small in number. However, the implemented ML model and its associated architecture also influence the behavior. Therefore, the occurrence of prediction errors resulting from the ML model itself is not surprising. This work addresses a corner case definition from an ML model’s perspective to determine which aspects must be considered. To achieve this goal, we present an overview of properties for corner cases that are beneficial for the description, explanation, reproduction, or synthetic generation of corner cases. To define ML corner cases, we review different considerations in the literature and summarize them in a general description and mathematical formulation, whereby the expected relevance-weighted loss is the key to distinguishing corner cases from common data. Moreover, we show how to operationalize the corner case characteristics to determine the value of a corner case. To conclude, we present the extended taxonomy for ML corner cases by adding the input, model, and deployment levels, considering the influence of the corner case properties.","PeriodicalId":510896,"journal":{"name":"AI Perspectives","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corner cases in machine learning processes\",\"authors\":\"Florian Heidecker, Maarten Bieshaar, Bernhard Sick\",\"doi\":\"10.1186/s42467-023-00015-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications using machine learning (ML), such as highly autonomous driving, depend highly on the performance of the ML model. The data amount and quality used for model training and validation are crucial. If the model cannot detect and interpret a new, rare, or perhaps dangerous situation, often referred to as a corner case, we will likely blame the data for not being good enough or too small in number. However, the implemented ML model and its associated architecture also influence the behavior. Therefore, the occurrence of prediction errors resulting from the ML model itself is not surprising. This work addresses a corner case definition from an ML model’s perspective to determine which aspects must be considered. To achieve this goal, we present an overview of properties for corner cases that are beneficial for the description, explanation, reproduction, or synthetic generation of corner cases. To define ML corner cases, we review different considerations in the literature and summarize them in a general description and mathematical formulation, whereby the expected relevance-weighted loss is the key to distinguishing corner cases from common data. Moreover, we show how to operationalize the corner case characteristics to determine the value of a corner case. To conclude, we present the extended taxonomy for ML corner cases by adding the input, model, and deployment levels, considering the influence of the corner case properties.\",\"PeriodicalId\":510896,\"journal\":{\"name\":\"AI Perspectives\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Perspectives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42467-023-00015-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42467-023-00015-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用机器学习(ML)的应用,如高度自动驾驶,在很大程度上取决于 ML 模型的性能。用于模型训练和验证的数据量和质量至关重要。如果模型无法检测和解释一种新的、罕见的或可能存在危险的情况(通常被称为 "角落情况"),我们很可能会责怪数据不够好或数量太少。然而,实施的 ML 模型及其相关架构也会影响行为。因此,出现由 ML 模型本身导致的预测错误并不奇怪。这项工作从 ML 模型的角度出发,对角情况进行定义,以确定必须考虑哪些方面。为了实现这一目标,我们概述了有利于描述、解释、再现或合成生成角案例的角案例属性。为了定义 ML 角案例,我们回顾了文献中的不同考虑因素,并将其总结为一般描述和数学表述,其中预期相关性加权损失是将角案例与普通数据区分开来的关键。此外,我们还展示了如何将角案特征操作化,以确定角案的价值。最后,考虑到角案例特性的影响,我们通过添加输入、模型和部署级别,提出了 ML 角案例扩展分类法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corner cases in machine learning processes
Applications using machine learning (ML), such as highly autonomous driving, depend highly on the performance of the ML model. The data amount and quality used for model training and validation are crucial. If the model cannot detect and interpret a new, rare, or perhaps dangerous situation, often referred to as a corner case, we will likely blame the data for not being good enough or too small in number. However, the implemented ML model and its associated architecture also influence the behavior. Therefore, the occurrence of prediction errors resulting from the ML model itself is not surprising. This work addresses a corner case definition from an ML model’s perspective to determine which aspects must be considered. To achieve this goal, we present an overview of properties for corner cases that are beneficial for the description, explanation, reproduction, or synthetic generation of corner cases. To define ML corner cases, we review different considerations in the literature and summarize them in a general description and mathematical formulation, whereby the expected relevance-weighted loss is the key to distinguishing corner cases from common data. Moreover, we show how to operationalize the corner case characteristics to determine the value of a corner case. To conclude, we present the extended taxonomy for ML corner cases by adding the input, model, and deployment levels, considering the influence of the corner case properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corner cases in machine learning processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1