双移动极值排序集合抽样设计

Pub Date : 2024-01-03 DOI:10.1007/s10255-024-1104-9
Meng Chen, Wang-xue Chen, Rui Yang
{"title":"双移动极值排序集合抽样设计","authors":"Meng Chen,&nbsp;Wang-xue Chen,&nbsp;Rui Yang","doi":"10.1007/s10255-024-1104-9","DOIUrl":null,"url":null,"abstract":"<div><p>The traditional simple random sampling (SRS) design method is ine cient in many cases. Statisticians proposed some new designs to increase e ciency. In this paper, as a variation of moving extremes ranked set sampling (MERSS), double MERSS (DMERSS) is proposed and its properties for estimating the population mean are considered. It turns out that, when the underlying distribution is symmetric, DMERSS gives unbiased estimators of the population mean. Also, it is found that DMERSS is more e cient than the SRS and MERSS methods for usual symmetric distributions (normal and uniform). For asymmetric distributions considered in this study, the DMERSS has a small bias and it is more e cient than SRS for usual asymmetric distribution (exponential) for small sample sizes.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double Moving Extremes Ranked Set Sampling Design\",\"authors\":\"Meng Chen,&nbsp;Wang-xue Chen,&nbsp;Rui Yang\",\"doi\":\"10.1007/s10255-024-1104-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The traditional simple random sampling (SRS) design method is ine cient in many cases. Statisticians proposed some new designs to increase e ciency. In this paper, as a variation of moving extremes ranked set sampling (MERSS), double MERSS (DMERSS) is proposed and its properties for estimating the population mean are considered. It turns out that, when the underlying distribution is symmetric, DMERSS gives unbiased estimators of the population mean. Also, it is found that DMERSS is more e cient than the SRS and MERSS methods for usual symmetric distributions (normal and uniform). For asymmetric distributions considered in this study, the DMERSS has a small bias and it is more e cient than SRS for usual asymmetric distribution (exponential) for small sample sizes.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1104-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1104-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的简单随机抽样(SRS)设计方法在很多情况下并不有效。统计学家提出了一些新的设计方法来提高效率。作为移动极值排序集抽样(MERSS)的一种变体,本文提出了双 MERSS(DMERSS),并考虑了它在估计总体均值时的特性。结果表明,当基本分布是对称的时候,DMERSS 能给出无偏的总体均值估计值。此外,对于通常的对称分布(正态分布和均匀分布),DMERSS 比 SRS 和 MERSS 方法更有效。对于本研究中考虑的非对称分布,DMERSS 的偏差较小,对于小样本量的通常非对称分布(指数分布),DMERSS 比 SRS 更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Double Moving Extremes Ranked Set Sampling Design

The traditional simple random sampling (SRS) design method is ine cient in many cases. Statisticians proposed some new designs to increase e ciency. In this paper, as a variation of moving extremes ranked set sampling (MERSS), double MERSS (DMERSS) is proposed and its properties for estimating the population mean are considered. It turns out that, when the underlying distribution is symmetric, DMERSS gives unbiased estimators of the population mean. Also, it is found that DMERSS is more e cient than the SRS and MERSS methods for usual symmetric distributions (normal and uniform). For asymmetric distributions considered in this study, the DMERSS has a small bias and it is more e cient than SRS for usual asymmetric distribution (exponential) for small sample sizes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1