π的非线性外推法估计值

Pub Date : 2024-01-03 DOI:10.1007/s10255-024-1115-6
Wen-qing Xu, Sha-sha Wang, Da-chuan Xu
{"title":"π的非线性外推法估计值","authors":"Wen-qing Xu,&nbsp;Sha-sha Wang,&nbsp;Da-chuan Xu","doi":"10.1007/s10255-024-1115-6","DOIUrl":null,"url":null,"abstract":"<div><p>The classical Archimedean approximation of <i>π</i> uses the semiperimeter or area of regular polygons inscribed in or circumscribed about a unit circle in ℝ<sup>2</sup> and it is well-known that by using linear combinations of these basic estimates, modern extrapolation techniques can greatly speed up the approximation process. Similarly, when <i>n</i> vertices are randomly selected on the circle, the semiperimeter and area of the corresponding random inscribed and circumscribing polygons are known to converge to <i>π</i> almost surely as <i>n</i> → ∞, and by further applying extrapolation processes, faster convergence rates can also be achieved through similar linear combinations of the semiperimeter and area of these random polygons. In this paper, we further develop nonlinear extrapolation methods for approximating <i>π</i> through certain nonlinear functions of the semiperimeter and area of such polygons. We focus on two types of extrapolation estimates of the forms <span>\\({{\\cal X}_n} = {\\cal S}_n^\\alpha {\\cal A}_n^\\beta \\)</span> and <span>\\({{\\cal Y}_n}(p) = {(\\alpha {\\cal S}_n^p + \\beta {\\cal A}_n^p)^{1/p}}\\)</span> where <i>α</i> + <i>β</i> = 1, <i>p</i> ≠ 0, and <span>\\({{\\cal S}_n}\\)</span> and <span>\\({{\\cal A}_n}\\)</span> respectively represents the semiperimeter and area of a random <i>n</i>-gon inscribed in the unit circle in ℝ<sup>2</sup>, and <span>\\({{\\cal X}_n}\\)</span> may be viewed as the limit of <span>\\({{\\cal Y}_n}(p)\\)</span> when <i>p</i> → 0. By deriving probabilistic asymptotic expansions with carefully controlled error estimates for <span>\\({{\\cal X}_n}\\)</span> and <span>\\({{\\cal Y}_n}(p)\\)</span>, we show that the choice <i>α</i> = 4/3, <i>β</i>= −1/3 minimizes the approximation error in both cases, and their distributions are also asymptotically normal.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Extrapolation Estimates of π\",\"authors\":\"Wen-qing Xu,&nbsp;Sha-sha Wang,&nbsp;Da-chuan Xu\",\"doi\":\"10.1007/s10255-024-1115-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The classical Archimedean approximation of <i>π</i> uses the semiperimeter or area of regular polygons inscribed in or circumscribed about a unit circle in ℝ<sup>2</sup> and it is well-known that by using linear combinations of these basic estimates, modern extrapolation techniques can greatly speed up the approximation process. Similarly, when <i>n</i> vertices are randomly selected on the circle, the semiperimeter and area of the corresponding random inscribed and circumscribing polygons are known to converge to <i>π</i> almost surely as <i>n</i> → ∞, and by further applying extrapolation processes, faster convergence rates can also be achieved through similar linear combinations of the semiperimeter and area of these random polygons. In this paper, we further develop nonlinear extrapolation methods for approximating <i>π</i> through certain nonlinear functions of the semiperimeter and area of such polygons. We focus on two types of extrapolation estimates of the forms <span>\\\\({{\\\\cal X}_n} = {\\\\cal S}_n^\\\\alpha {\\\\cal A}_n^\\\\beta \\\\)</span> and <span>\\\\({{\\\\cal Y}_n}(p) = {(\\\\alpha {\\\\cal S}_n^p + \\\\beta {\\\\cal A}_n^p)^{1/p}}\\\\)</span> where <i>α</i> + <i>β</i> = 1, <i>p</i> ≠ 0, and <span>\\\\({{\\\\cal S}_n}\\\\)</span> and <span>\\\\({{\\\\cal A}_n}\\\\)</span> respectively represents the semiperimeter and area of a random <i>n</i>-gon inscribed in the unit circle in ℝ<sup>2</sup>, and <span>\\\\({{\\\\cal X}_n}\\\\)</span> may be viewed as the limit of <span>\\\\({{\\\\cal Y}_n}(p)\\\\)</span> when <i>p</i> → 0. By deriving probabilistic asymptotic expansions with carefully controlled error estimates for <span>\\\\({{\\\\cal X}_n}\\\\)</span> and <span>\\\\({{\\\\cal Y}_n}(p)\\\\)</span>, we show that the choice <i>α</i> = 4/3, <i>β</i>= −1/3 minimizes the approximation error in both cases, and their distributions are also asymptotically normal.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1115-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1115-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,通过使用这些基本估计值的线性组合,现代外推法可以大大加快近似过程。同样,当在圆上随机选择 n 个顶点时,已知相应的随机内切多边形和外切多边形的半径和面积在 n → ∞ 时几乎肯定收敛于 π,进一步应用外推法,通过对这些随机多边形的半径和面积进行类似的线性组合,也可以获得更快的收敛速度。在本文中,我们将进一步开发非线性外推法,通过此类多边形的半径和面积的某些非线性函数来逼近 π。我们将重点放在两种形式的外推估计上:\({{\cal X}_n} = {\cal S}_n^\alpha {\cal A}_n^\beta \)和\({{\cal Y}_n}(p) = {(\alpha {\cal S}_n^p + \beta {\cal A}_n^p)^{1/p}}\) 其中 α + β = 1, p ≠ 0、和 \({{\cal S}_n}\) 和 \({{\cal A}_n}\) 分别表示在ℝ2中嵌入单位圆的随机 n 个坤的半径和面积,并且 \({{\cal X}_n}\) 可以看作是 p → 0 时 \({{\cal Y}_n}(p)\) 的极限。通过对 \({{\cal X}_n}\) 和 \({{\cal Y}_n}(p)\)的误差估计进行仔细控制,推导出概率渐近展开,我们证明选择 α=4/3, β= -1/3 可以使两种情况下的近似误差最小化,并且它们的分布也是渐近正态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Nonlinear Extrapolation Estimates of π

The classical Archimedean approximation of π uses the semiperimeter or area of regular polygons inscribed in or circumscribed about a unit circle in ℝ2 and it is well-known that by using linear combinations of these basic estimates, modern extrapolation techniques can greatly speed up the approximation process. Similarly, when n vertices are randomly selected on the circle, the semiperimeter and area of the corresponding random inscribed and circumscribing polygons are known to converge to π almost surely as n → ∞, and by further applying extrapolation processes, faster convergence rates can also be achieved through similar linear combinations of the semiperimeter and area of these random polygons. In this paper, we further develop nonlinear extrapolation methods for approximating π through certain nonlinear functions of the semiperimeter and area of such polygons. We focus on two types of extrapolation estimates of the forms \({{\cal X}_n} = {\cal S}_n^\alpha {\cal A}_n^\beta \) and \({{\cal Y}_n}(p) = {(\alpha {\cal S}_n^p + \beta {\cal A}_n^p)^{1/p}}\) where α + β = 1, p ≠ 0, and \({{\cal S}_n}\) and \({{\cal A}_n}\) respectively represents the semiperimeter and area of a random n-gon inscribed in the unit circle in ℝ2, and \({{\cal X}_n}\) may be viewed as the limit of \({{\cal Y}_n}(p)\) when p → 0. By deriving probabilistic asymptotic expansions with carefully controlled error estimates for \({{\cal X}_n}\) and \({{\cal Y}_n}(p)\), we show that the choice α = 4/3, β= −1/3 minimizes the approximation error in both cases, and their distributions are also asymptotically normal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1