用于 PolSAR 图像分类的多尺度对比学习方法

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2024-01-01 DOI:10.1117/1.jrs.18.014502
Wenqiang Hua, Chen Wang, Nan Sun, Lin Liu
{"title":"用于 PolSAR 图像分类的多尺度对比学习方法","authors":"Wenqiang Hua, Chen Wang, Nan Sun, Lin Liu","doi":"10.1117/1.jrs.18.014502","DOIUrl":null,"url":null,"abstract":"Although deep learning-based methods have made remarkable achievements in polarimetric synthetic aperture radar (PolSAR) image classification, these methods require a large number of labeled samples. However, for PolSAR image classification, it is difficult to obtain a large number of labeled samples, which requires extensive human labor and material resources. Therefore, a new PolSAR image classification method based on multi-scale contrastive learning is proposed, which can achieve good classification results with only a small number of labeled samples. During the pre-training process, we propose a multi-scale contrastive learning network model that uses the characteristics of the data itself to train the network by contrastive training. In addition, to capture richer feature information, a multi-scale network structure is introduced. In the training process, considering the diversity and complexity of PolSAR images, we design a hybrid loss function combining the supervised and unsupervised information to achieve better classification performance with limited labeled samples. The experimental results on three real PolSAR datasets have demonstrated that the proposed method outperforms other comparison methods, even with limited labeled samples.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":"129 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale contrastive learning method for PolSAR image classification\",\"authors\":\"Wenqiang Hua, Chen Wang, Nan Sun, Lin Liu\",\"doi\":\"10.1117/1.jrs.18.014502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although deep learning-based methods have made remarkable achievements in polarimetric synthetic aperture radar (PolSAR) image classification, these methods require a large number of labeled samples. However, for PolSAR image classification, it is difficult to obtain a large number of labeled samples, which requires extensive human labor and material resources. Therefore, a new PolSAR image classification method based on multi-scale contrastive learning is proposed, which can achieve good classification results with only a small number of labeled samples. During the pre-training process, we propose a multi-scale contrastive learning network model that uses the characteristics of the data itself to train the network by contrastive training. In addition, to capture richer feature information, a multi-scale network structure is introduced. In the training process, considering the diversity and complexity of PolSAR images, we design a hybrid loss function combining the supervised and unsupervised information to achieve better classification performance with limited labeled samples. The experimental results on three real PolSAR datasets have demonstrated that the proposed method outperforms other comparison methods, even with limited labeled samples.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.014502\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.014502","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

虽然基于深度学习的方法在偏振合成孔径雷达(PolSAR)图像分类方面取得了显著成就,但这些方法需要大量的标记样本。然而,对于 PolSAR 图像分类来说,很难获得大量的标记样本,这需要大量的人力和物力。因此,本文提出了一种基于多尺度对比学习的新 PolSAR 图像分类方法,只需少量标注样本即可获得良好的分类效果。在预训练过程中,我们提出了一种多尺度对比学习网络模型,利用数据本身的特点通过对比训练来训练网络。此外,为了捕捉更丰富的特征信息,我们还引入了多尺度网络结构。在训练过程中,考虑到 PolSAR 图像的多样性和复杂性,我们设计了一种混合损失函数,将监督信息和非监督信息相结合,从而在有限的标注样本下获得更好的分类性能。在三个真实 PolSAR 数据集上的实验结果表明,即使在标注样本有限的情况下,所提出的方法也优于其他比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-scale contrastive learning method for PolSAR image classification
Although deep learning-based methods have made remarkable achievements in polarimetric synthetic aperture radar (PolSAR) image classification, these methods require a large number of labeled samples. However, for PolSAR image classification, it is difficult to obtain a large number of labeled samples, which requires extensive human labor and material resources. Therefore, a new PolSAR image classification method based on multi-scale contrastive learning is proposed, which can achieve good classification results with only a small number of labeled samples. During the pre-training process, we propose a multi-scale contrastive learning network model that uses the characteristics of the data itself to train the network by contrastive training. In addition, to capture richer feature information, a multi-scale network structure is introduced. In the training process, considering the diversity and complexity of PolSAR images, we design a hybrid loss function combining the supervised and unsupervised information to achieve better classification performance with limited labeled samples. The experimental results on three real PolSAR datasets have demonstrated that the proposed method outperforms other comparison methods, even with limited labeled samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions Cascaded CNN and global–local attention transformer network-based semantic segmentation for high-resolution remote sensing image Coastal chlorophyll-a concentration estimation by fusion of Sentinel-2 multispectral instrument and in-situ hyperspectral data Spectral index for estimating leaf water content across diverse plant species using multiple viewing angles Optimal band selection using explainable artificial intelligence for machine learning-based hyperspectral image classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1