{"title":"约束优化的精确投影惩罚法","authors":"","doi":"10.1007/s10898-023-01350-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A new exact projective penalty method is proposed for the equivalent reduction of constrained optimization problems to nonsmooth unconstrained ones. In the method, the original objective function is extended to infeasible points by summing its value at the projection of an infeasible point on the feasible set with the distance to the projection. Beside Euclidean projections, also a pointed projection in the direction of some fixed internal feasible point can be used. The equivalence means that local and global minimums of the problems coincide. Nonconvex sets with multivalued Euclidean projections are admitted, and the objective function may be lower semicontinuous. The particular case of convex problems is included. The obtained unconstrained or box constrained problem is solved by a version of the branch and bound method combined with local optimization. In principle, any local optimizer can be used within the branch and bound scheme but in numerical experiments sequential quadratic programming method was successfully used. So the proposed exact penalty method does not assume the existence of the objective function outside the allowable area and does not require the selection of the penalty coefficient.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"30 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The exact projective penalty method for constrained optimization\",\"authors\":\"\",\"doi\":\"10.1007/s10898-023-01350-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>A new exact projective penalty method is proposed for the equivalent reduction of constrained optimization problems to nonsmooth unconstrained ones. In the method, the original objective function is extended to infeasible points by summing its value at the projection of an infeasible point on the feasible set with the distance to the projection. Beside Euclidean projections, also a pointed projection in the direction of some fixed internal feasible point can be used. The equivalence means that local and global minimums of the problems coincide. Nonconvex sets with multivalued Euclidean projections are admitted, and the objective function may be lower semicontinuous. The particular case of convex problems is included. The obtained unconstrained or box constrained problem is solved by a version of the branch and bound method combined with local optimization. In principle, any local optimizer can be used within the branch and bound scheme but in numerical experiments sequential quadratic programming method was successfully used. So the proposed exact penalty method does not assume the existence of the objective function outside the allowable area and does not require the selection of the penalty coefficient.</p>\",\"PeriodicalId\":15961,\"journal\":{\"name\":\"Journal of Global Optimization\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-023-01350-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-023-01350-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
The exact projective penalty method for constrained optimization
Abstract
A new exact projective penalty method is proposed for the equivalent reduction of constrained optimization problems to nonsmooth unconstrained ones. In the method, the original objective function is extended to infeasible points by summing its value at the projection of an infeasible point on the feasible set with the distance to the projection. Beside Euclidean projections, also a pointed projection in the direction of some fixed internal feasible point can be used. The equivalence means that local and global minimums of the problems coincide. Nonconvex sets with multivalued Euclidean projections are admitted, and the objective function may be lower semicontinuous. The particular case of convex problems is included. The obtained unconstrained or box constrained problem is solved by a version of the branch and bound method combined with local optimization. In principle, any local optimizer can be used within the branch and bound scheme but in numerical experiments sequential quadratic programming method was successfully used. So the proposed exact penalty method does not assume the existence of the objective function outside the allowable area and does not require the selection of the penalty coefficient.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.