B.-Y. Jia, R.-Y. Xu, Z.-H. Shi, N.-N. Sun, R. Xu, S.-H. Wu, L.-F. Gao, B. Du
{"title":"在破碎的城市环境中,同域昆虫在不同选择性力量作用下的体型变化","authors":"B.-Y. Jia, R.-Y. Xu, Z.-H. Shi, N.-N. Sun, R. Xu, S.-H. Wu, L.-F. Gao, B. Du","doi":"10.1111/jzo.13143","DOIUrl":null,"url":null,"abstract":"<p>Phenotypic plasticity, which encompasses the diversification of both irreversible and reversible traits, has long been considered an adaptive response by animals to varying environmental conditions. However, the process by which irreversible and reversible traits are coordinated to form an adaptive response to the changing environment has yet to be clarified. Here, we investigated the variation in body size of two urban insect species in the context of habitat fragmentation. These species were the Chinese cricket <i>Gryllus chinensis</i> and the stove grasshopper <i>Diestrammena japonica</i>, which are sympatric in urban housing estates. Results indicated that both species changed in body size in patches of urban environment. However, their body size shifts showed opposite tendencies and were influenced by distinct selective forces: Chinese crickets increased their body size with the patch history and predation risk, whereas stove grasshoppers decreased their body size with the degree of fragmentation of the patches. Territorial and competitive Chinese crickets rarely experience resource scarcity during urban environment fragmentation. Thus, a larger body size was preferred in response to intraspecific competition among Chinese crickets. By contrast, stove grasshoppers are group-living and scramble for resources as competitors, requiring a large territory to secure adequate food for supporting a group of individuals. Consequently, stove grasshoppers frequently experienced resource scarcity in the patchy habitat, favoring small body size to reduce individual requirements throughout the life cycle. Our findings indicate that the body size shift of sympatric insects may be subjected to distinct selective forces in fragmented habitats, depending primarily on their reversible traits.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Body size shift in sympatric insects in response to distinct selective forces in fragmented urban environments\",\"authors\":\"B.-Y. Jia, R.-Y. Xu, Z.-H. Shi, N.-N. Sun, R. Xu, S.-H. Wu, L.-F. Gao, B. Du\",\"doi\":\"10.1111/jzo.13143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phenotypic plasticity, which encompasses the diversification of both irreversible and reversible traits, has long been considered an adaptive response by animals to varying environmental conditions. However, the process by which irreversible and reversible traits are coordinated to form an adaptive response to the changing environment has yet to be clarified. Here, we investigated the variation in body size of two urban insect species in the context of habitat fragmentation. These species were the Chinese cricket <i>Gryllus chinensis</i> and the stove grasshopper <i>Diestrammena japonica</i>, which are sympatric in urban housing estates. Results indicated that both species changed in body size in patches of urban environment. However, their body size shifts showed opposite tendencies and were influenced by distinct selective forces: Chinese crickets increased their body size with the patch history and predation risk, whereas stove grasshoppers decreased their body size with the degree of fragmentation of the patches. Territorial and competitive Chinese crickets rarely experience resource scarcity during urban environment fragmentation. Thus, a larger body size was preferred in response to intraspecific competition among Chinese crickets. By contrast, stove grasshoppers are group-living and scramble for resources as competitors, requiring a large territory to secure adequate food for supporting a group of individuals. Consequently, stove grasshoppers frequently experienced resource scarcity in the patchy habitat, favoring small body size to reduce individual requirements throughout the life cycle. Our findings indicate that the body size shift of sympatric insects may be subjected to distinct selective forces in fragmented habitats, depending primarily on their reversible traits.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jzo.13143\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jzo.13143","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Body size shift in sympatric insects in response to distinct selective forces in fragmented urban environments
Phenotypic plasticity, which encompasses the diversification of both irreversible and reversible traits, has long been considered an adaptive response by animals to varying environmental conditions. However, the process by which irreversible and reversible traits are coordinated to form an adaptive response to the changing environment has yet to be clarified. Here, we investigated the variation in body size of two urban insect species in the context of habitat fragmentation. These species were the Chinese cricket Gryllus chinensis and the stove grasshopper Diestrammena japonica, which are sympatric in urban housing estates. Results indicated that both species changed in body size in patches of urban environment. However, their body size shifts showed opposite tendencies and were influenced by distinct selective forces: Chinese crickets increased their body size with the patch history and predation risk, whereas stove grasshoppers decreased their body size with the degree of fragmentation of the patches. Territorial and competitive Chinese crickets rarely experience resource scarcity during urban environment fragmentation. Thus, a larger body size was preferred in response to intraspecific competition among Chinese crickets. By contrast, stove grasshoppers are group-living and scramble for resources as competitors, requiring a large territory to secure adequate food for supporting a group of individuals. Consequently, stove grasshoppers frequently experienced resource scarcity in the patchy habitat, favoring small body size to reduce individual requirements throughout the life cycle. Our findings indicate that the body size shift of sympatric insects may be subjected to distinct selective forces in fragmented habitats, depending primarily on their reversible traits.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.