Sergio Amat, David Levin, Juan Ruiz-Álvarez, Dionisio F. Yáñez
{"title":"使细分方案适应不连续性的正则化修正方法","authors":"Sergio Amat, David Levin, Juan Ruiz-Álvarez, Dionisio F. Yáñez","doi":"10.1007/s10543-023-01003-8","DOIUrl":null,"url":null,"abstract":"<p>Linear approximation methods suffer from Gibbs oscillations when approximating functions with jumps. Essentially non oscillatory subcell-resolution (ENO-SR) is a local technique avoiding oscillations and with a full order of accuracy, but a loss of regularity of the approximant appears. The goal of this paper is to introduce a new approach having both properties of full accuracy and regularity. In order to obtain it, we propose a three-stage algorithm: first, the data is smoothed by subtracting an appropriate non-smooth data sequence; then a chosen high order linear approximation operator is applied to the smoothed data and finally, an approximation with the proper jump or corner (jump in the first order derivative) discontinuity structure is reinstated by correcting the smooth approximation with the non-smooth element used in the first stage. This new procedure can be applied as subdivision scheme to design curves and surfaces both in point-value and in cell-average contexts. Using the proposed algorithm, we are able to construct approximations with high precision, with high piecewise regularity, and without smearing nor oscillations in the presence of discontinuities. These are desired properties in real applications as computer aided design or car design, among others.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A regularization–correction approach for adapting subdivision schemes to the presence of discontinuities\",\"authors\":\"Sergio Amat, David Levin, Juan Ruiz-Álvarez, Dionisio F. Yáñez\",\"doi\":\"10.1007/s10543-023-01003-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Linear approximation methods suffer from Gibbs oscillations when approximating functions with jumps. Essentially non oscillatory subcell-resolution (ENO-SR) is a local technique avoiding oscillations and with a full order of accuracy, but a loss of regularity of the approximant appears. The goal of this paper is to introduce a new approach having both properties of full accuracy and regularity. In order to obtain it, we propose a three-stage algorithm: first, the data is smoothed by subtracting an appropriate non-smooth data sequence; then a chosen high order linear approximation operator is applied to the smoothed data and finally, an approximation with the proper jump or corner (jump in the first order derivative) discontinuity structure is reinstated by correcting the smooth approximation with the non-smooth element used in the first stage. This new procedure can be applied as subdivision scheme to design curves and surfaces both in point-value and in cell-average contexts. Using the proposed algorithm, we are able to construct approximations with high precision, with high piecewise regularity, and without smearing nor oscillations in the presence of discontinuities. These are desired properties in real applications as computer aided design or car design, among others.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-023-01003-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-023-01003-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A regularization–correction approach for adapting subdivision schemes to the presence of discontinuities
Linear approximation methods suffer from Gibbs oscillations when approximating functions with jumps. Essentially non oscillatory subcell-resolution (ENO-SR) is a local technique avoiding oscillations and with a full order of accuracy, but a loss of regularity of the approximant appears. The goal of this paper is to introduce a new approach having both properties of full accuracy and regularity. In order to obtain it, we propose a three-stage algorithm: first, the data is smoothed by subtracting an appropriate non-smooth data sequence; then a chosen high order linear approximation operator is applied to the smoothed data and finally, an approximation with the proper jump or corner (jump in the first order derivative) discontinuity structure is reinstated by correcting the smooth approximation with the non-smooth element used in the first stage. This new procedure can be applied as subdivision scheme to design curves and surfaces both in point-value and in cell-average contexts. Using the proposed algorithm, we are able to construct approximations with high precision, with high piecewise regularity, and without smearing nor oscillations in the presence of discontinuities. These are desired properties in real applications as computer aided design or car design, among others.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.