C. M. Murzyn, D. J. Allen, A. N. Baca, A. A. Egeln, R. W. Houim, D. R. Guildenbecher, R. T. Marinis, M. C. Welliver
{"title":"通过激光吸收光谱推进公斤级爆炸火球的热化学诊断工作","authors":"C. M. Murzyn, D. J. Allen, A. N. Baca, A. A. Egeln, R. W. Houim, D. R. Guildenbecher, R. T. Marinis, M. C. Welliver","doi":"10.1063/5.0182325","DOIUrl":null,"url":null,"abstract":"This article presents methodological advances in the state-of-the-art for making time-dependent, thermochemical measurements within kilogram-scale explosive post-detonation fireballs utilizing tunable laser absorption spectroscopy. This measurement capability is critical for validating multi-scale, multi-physics models of post-detonation dynamics. The technique is based on hardened gauges built around rapidly-tunable lasers and custom post-processing algorithms that provide quantitative thermochemical data interior to large and opaque explosive fireballs. The authors present a holistic overview of the technique including gauge design, the laser absorption diagnostic, and the custom data processing algorithms. Additionally, fielding high-bandwidth laser absorption probes at stand-off ranges presents new challenges in data processing that must compensate for long distance signal transmission effects. We highlight representative data from a hardened gauge measurement at 0.81 m stand-off from a 2.78 kg LX-14 explosive charge detonated in an outdoor test arena. We discuss progress in all-optical measurement of temperature, pressure, and water vapor number density at a 100 kHz repetition rate during the first 10 ms of the fireball evolution. We conclude the article with a brief discussion on our current approach for comparing hardened gauge measurements with computational fluid dynamic simulations.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"15 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing thermochemical diagnostics in kilogram-scale explosive fireballs via laser absorption spectroscopy\",\"authors\":\"C. M. Murzyn, D. J. Allen, A. N. Baca, A. A. Egeln, R. W. Houim, D. R. Guildenbecher, R. T. Marinis, M. C. Welliver\",\"doi\":\"10.1063/5.0182325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents methodological advances in the state-of-the-art for making time-dependent, thermochemical measurements within kilogram-scale explosive post-detonation fireballs utilizing tunable laser absorption spectroscopy. This measurement capability is critical for validating multi-scale, multi-physics models of post-detonation dynamics. The technique is based on hardened gauges built around rapidly-tunable lasers and custom post-processing algorithms that provide quantitative thermochemical data interior to large and opaque explosive fireballs. The authors present a holistic overview of the technique including gauge design, the laser absorption diagnostic, and the custom data processing algorithms. Additionally, fielding high-bandwidth laser absorption probes at stand-off ranges presents new challenges in data processing that must compensate for long distance signal transmission effects. We highlight representative data from a hardened gauge measurement at 0.81 m stand-off from a 2.78 kg LX-14 explosive charge detonated in an outdoor test arena. We discuss progress in all-optical measurement of temperature, pressure, and water vapor number density at a 100 kHz repetition rate during the first 10 ms of the fireball evolution. We conclude the article with a brief discussion on our current approach for comparing hardened gauge measurements with computational fluid dynamic simulations.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0182325\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0182325","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Advancing thermochemical diagnostics in kilogram-scale explosive fireballs via laser absorption spectroscopy
This article presents methodological advances in the state-of-the-art for making time-dependent, thermochemical measurements within kilogram-scale explosive post-detonation fireballs utilizing tunable laser absorption spectroscopy. This measurement capability is critical for validating multi-scale, multi-physics models of post-detonation dynamics. The technique is based on hardened gauges built around rapidly-tunable lasers and custom post-processing algorithms that provide quantitative thermochemical data interior to large and opaque explosive fireballs. The authors present a holistic overview of the technique including gauge design, the laser absorption diagnostic, and the custom data processing algorithms. Additionally, fielding high-bandwidth laser absorption probes at stand-off ranges presents new challenges in data processing that must compensate for long distance signal transmission effects. We highlight representative data from a hardened gauge measurement at 0.81 m stand-off from a 2.78 kg LX-14 explosive charge detonated in an outdoor test arena. We discuss progress in all-optical measurement of temperature, pressure, and water vapor number density at a 100 kHz repetition rate during the first 10 ms of the fireball evolution. We conclude the article with a brief discussion on our current approach for comparing hardened gauge measurements with computational fluid dynamic simulations.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces