测量短距离重力速度:灵敏度估计

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astronomische Nachrichten Pub Date : 2024-01-02 DOI:10.1002/asna.20230177
Carlos Frajuca, Fabio da Silva Bortoli, Natan Vanelli Garcia, Nadja Simao Magalhaes
{"title":"测量短距离重力速度:灵敏度估计","authors":"Carlos Frajuca,&nbsp;Fabio da Silva Bortoli,&nbsp;Natan Vanelli Garcia,&nbsp;Nadja Simao Magalhaes","doi":"10.1002/asna.20230177","DOIUrl":null,"url":null,"abstract":"<p>An experimental set up was proposed to determine the speed of gravitational signals traveling in air or in some other medium. It involves two vibrating masses—the emitters, which will be the sources of periodic tidal gravitational signals—and one sapphire-made mass that will act as a detector, positioned between the two emitters. The detector is planned to be suspended in vacuum and cooled down to 4.2 K, and its vibrational amplitude should be measured by a microwave signal (with ultra-low phase-noise) that is expected to resonate with the whispering gallery modes inside the detector. The mechanical and electrical quality factors of sapphire are quite high, yielding a very narrow detection band that reduces the detector sensitivity while amplifying the phase difference of the emitters' signals. The frequencies of the normal modes of the detector were previously determined using a finite element program. In this work, these frequencies are applied to the calculation of a first estimate of the sensitivity of the experiment.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 2-3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring the speed of gravity at short distances: Sensitivity estimate\",\"authors\":\"Carlos Frajuca,&nbsp;Fabio da Silva Bortoli,&nbsp;Natan Vanelli Garcia,&nbsp;Nadja Simao Magalhaes\",\"doi\":\"10.1002/asna.20230177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An experimental set up was proposed to determine the speed of gravitational signals traveling in air or in some other medium. It involves two vibrating masses—the emitters, which will be the sources of periodic tidal gravitational signals—and one sapphire-made mass that will act as a detector, positioned between the two emitters. The detector is planned to be suspended in vacuum and cooled down to 4.2 K, and its vibrational amplitude should be measured by a microwave signal (with ultra-low phase-noise) that is expected to resonate with the whispering gallery modes inside the detector. The mechanical and electrical quality factors of sapphire are quite high, yielding a very narrow detection band that reduces the detector sensitivity while amplifying the phase difference of the emitters' signals. The frequencies of the normal modes of the detector were previously determined using a finite element program. In this work, these frequencies are applied to the calculation of a first estimate of the sensitivity of the experiment.</p>\",\"PeriodicalId\":55442,\"journal\":{\"name\":\"Astronomische Nachrichten\",\"volume\":\"345 2-3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomische Nachrichten\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asna.20230177\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20230177","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

为了确定引力信号在空气或其他介质中传播的速度,人们提出了一种实验装置。这套装置包括两个振动质量块--发射器,它们将是周期性潮汐引力信号的来源;一个蓝宝石质量块将作为探测器,位于两个发射器之间。探测器计划悬挂在真空中,并冷却到 4.2 K,其振动幅度应通过微波信号(具有超低相位噪声)来测量,该信号预计将与探测器内部的耳语廊模式产生共振。蓝宝石的机械和电气品质因数相当高,因此探测带非常窄,在放大发射器信号相位差的同时降低了探测器的灵敏度。探测器正常模式的频率先前已通过有限元程序确定。在这项工作中,这些频率被用于计算实验灵敏度的初步估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring the speed of gravity at short distances: Sensitivity estimate

An experimental set up was proposed to determine the speed of gravitational signals traveling in air or in some other medium. It involves two vibrating masses—the emitters, which will be the sources of periodic tidal gravitational signals—and one sapphire-made mass that will act as a detector, positioned between the two emitters. The detector is planned to be suspended in vacuum and cooled down to 4.2 K, and its vibrational amplitude should be measured by a microwave signal (with ultra-low phase-noise) that is expected to resonate with the whispering gallery modes inside the detector. The mechanical and electrical quality factors of sapphire are quite high, yielding a very narrow detection band that reduces the detector sensitivity while amplifying the phase difference of the emitters' signals. The frequencies of the normal modes of the detector were previously determined using a finite element program. In this work, these frequencies are applied to the calculation of a first estimate of the sensitivity of the experiment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomische Nachrichten
Astronomische Nachrichten 地学天文-天文与天体物理
CiteScore
1.80
自引率
11.10%
发文量
57
审稿时长
4-8 weeks
期刊介绍: Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.
期刊最新文献
Issue Information: Astron. Nachr. 07/2024 Cover Picture: Astron. Nachr. 8/2024 HX Velorum: Ellipsoidal/Rotational Binary With β Cep Type Component Red Quasars: Estimation of SMBH Spin, Mass, and Accretion Disk Inclination Angle Photometric and Kinematic Studies of Open Clusters Ruprecht 1 and Ruprecht 171
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1