{"title":"pH 值对豌豆蛋白-pectin 分散体胶凝特性的影响","authors":"Dan Zhang , Da Chen , Osvaldo H. Campanella","doi":"10.1016/j.foodhyd.2024.109731","DOIUrl":null,"url":null,"abstract":"<div><p>Phase behavior of protein-polysaccharide mixtures can be controlled by adjusting parameters, such as polymer concentrations and pH. However, the relationships between these interactions and resulting microstructures and textures are not fully understood. The effects of pH (5.5, 7, and 8.5) and low-methoxyl (LM) pectin content (0.5% and 1%) on the rheological properties and microstructures of heat-induced pea protein gels were investigated. At pH 5.5, the addition of LM pectin significantly increased the size of protein aggregates, which is explained by the strong interactions between proteins and LM pectins at that pH; a quartz crystal microbalance<span> revealed the formation of insoluble complexes with reduced solubility. The storage modulus (G′) of pea protein gels at pH 5.5 increased with 0.5% of LM pectin, whereas 1% of LM pectin led to a decreased G′ and the gels water holding capacity<span>. At pHs 7 and 8.5, the addition of LM pectin increased the size of protein aggregates due to the segregative phase separation of negatively charged pea proteins and LM pectins. An increase in G′ with LM pectin concentrations in the gels was also observed at pHs 7 and 8.5. Gel microstructures with phase-separated zones were observed by confocal microscopy. Furthermore, the addition of LM pectin increased the digestibility of pea protein gels prepared at the three pH values under simulated gastrointestinal conditions. Better knowledge of the rheological properties and microstructures of pea protein-LM pectin mixed gels obtained under different pH conditions will allow for optimal use of protein-polysaccharide mixtures in food formulations to attain binary gel products with expected textural and nutritional properties.</span></span></p></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"151 ","pages":"Article 109731"},"PeriodicalIF":11.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of pH on the gelling properties of pea protein-pectin dispersions\",\"authors\":\"Dan Zhang , Da Chen , Osvaldo H. Campanella\",\"doi\":\"10.1016/j.foodhyd.2024.109731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phase behavior of protein-polysaccharide mixtures can be controlled by adjusting parameters, such as polymer concentrations and pH. However, the relationships between these interactions and resulting microstructures and textures are not fully understood. The effects of pH (5.5, 7, and 8.5) and low-methoxyl (LM) pectin content (0.5% and 1%) on the rheological properties and microstructures of heat-induced pea protein gels were investigated. At pH 5.5, the addition of LM pectin significantly increased the size of protein aggregates, which is explained by the strong interactions between proteins and LM pectins at that pH; a quartz crystal microbalance<span> revealed the formation of insoluble complexes with reduced solubility. The storage modulus (G′) of pea protein gels at pH 5.5 increased with 0.5% of LM pectin, whereas 1% of LM pectin led to a decreased G′ and the gels water holding capacity<span>. At pHs 7 and 8.5, the addition of LM pectin increased the size of protein aggregates due to the segregative phase separation of negatively charged pea proteins and LM pectins. An increase in G′ with LM pectin concentrations in the gels was also observed at pHs 7 and 8.5. Gel microstructures with phase-separated zones were observed by confocal microscopy. Furthermore, the addition of LM pectin increased the digestibility of pea protein gels prepared at the three pH values under simulated gastrointestinal conditions. Better knowledge of the rheological properties and microstructures of pea protein-LM pectin mixed gels obtained under different pH conditions will allow for optimal use of protein-polysaccharide mixtures in food formulations to attain binary gel products with expected textural and nutritional properties.</span></span></p></div>\",\"PeriodicalId\":320,\"journal\":{\"name\":\"Food Hydrocolloids\",\"volume\":\"151 \",\"pages\":\"Article 109731\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268005X24000055\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24000055","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Effect of pH on the gelling properties of pea protein-pectin dispersions
Phase behavior of protein-polysaccharide mixtures can be controlled by adjusting parameters, such as polymer concentrations and pH. However, the relationships between these interactions and resulting microstructures and textures are not fully understood. The effects of pH (5.5, 7, and 8.5) and low-methoxyl (LM) pectin content (0.5% and 1%) on the rheological properties and microstructures of heat-induced pea protein gels were investigated. At pH 5.5, the addition of LM pectin significantly increased the size of protein aggregates, which is explained by the strong interactions between proteins and LM pectins at that pH; a quartz crystal microbalance revealed the formation of insoluble complexes with reduced solubility. The storage modulus (G′) of pea protein gels at pH 5.5 increased with 0.5% of LM pectin, whereas 1% of LM pectin led to a decreased G′ and the gels water holding capacity. At pHs 7 and 8.5, the addition of LM pectin increased the size of protein aggregates due to the segregative phase separation of negatively charged pea proteins and LM pectins. An increase in G′ with LM pectin concentrations in the gels was also observed at pHs 7 and 8.5. Gel microstructures with phase-separated zones were observed by confocal microscopy. Furthermore, the addition of LM pectin increased the digestibility of pea protein gels prepared at the three pH values under simulated gastrointestinal conditions. Better knowledge of the rheological properties and microstructures of pea protein-LM pectin mixed gels obtained under different pH conditions will allow for optimal use of protein-polysaccharide mixtures in food formulations to attain binary gel products with expected textural and nutritional properties.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.