Jonas Bley, Vieri Mattei, Simon Goorney, Jacob Sherson, Stefan Heusler
{"title":"利用量子合成器建立布洛赫球上的辅助隧道模型","authors":"Jonas Bley, Vieri Mattei, Simon Goorney, Jacob Sherson, Stefan Heusler","doi":"10.1088/1361-6404/ad139a","DOIUrl":null,"url":null,"abstract":"The Bloch sphere representation is a geometric model for all possible quantum states of a two-level system that can be used to describe the time dynamics of a qubit. As explicit application, we consider the time dynamics of a particle in a double-well potential. In particular, we adopt a recent method for off-resonant excitations, the so-called SUPER principle (Swing Up of the quantum emitter population) driven by periodic electromagnetic fields, to the context of quantum tunnelling. We show that the tunnelling probability can be enhanced significantly when an appropriate oscillation of the potential height is introduced. Driven by a collaborative approach we call <italic toggle=\"yes\">educator-developer dialogue</italic>, an updated version of the software Quantum Composer is presented. For educational purposes, we map the two lowest energy states of the 1D-Schrödinger equation to the Bloch sphere representation, leading to a rather clear and intuitive physical picture for the pertinent time dynamics.","PeriodicalId":50480,"journal":{"name":"European Journal of Physics","volume":"30 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling assisted tunneling on the Bloch sphere using the Quantum Composer\",\"authors\":\"Jonas Bley, Vieri Mattei, Simon Goorney, Jacob Sherson, Stefan Heusler\",\"doi\":\"10.1088/1361-6404/ad139a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bloch sphere representation is a geometric model for all possible quantum states of a two-level system that can be used to describe the time dynamics of a qubit. As explicit application, we consider the time dynamics of a particle in a double-well potential. In particular, we adopt a recent method for off-resonant excitations, the so-called SUPER principle (Swing Up of the quantum emitter population) driven by periodic electromagnetic fields, to the context of quantum tunnelling. We show that the tunnelling probability can be enhanced significantly when an appropriate oscillation of the potential height is introduced. Driven by a collaborative approach we call <italic toggle=\\\"yes\\\">educator-developer dialogue</italic>, an updated version of the software Quantum Composer is presented. For educational purposes, we map the two lowest energy states of the 1D-Schrödinger equation to the Bloch sphere representation, leading to a rather clear and intuitive physical picture for the pertinent time dynamics.\",\"PeriodicalId\":50480,\"journal\":{\"name\":\"European Journal of Physics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6404/ad139a\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6404/ad139a","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
摘要
布洛赫球表示法是两级系统所有可能量子态的几何模型,可用来描述量子比特的时间动力学。作为明确的应用,我们考虑了双阱势中粒子的时间动力学。特别是,我们采用了一种最新的非共振激发方法,即在周期性电磁场驱动下的所谓 SUPER 原理(量子发射器群的摆动上升),将其应用于量子隧穿。我们的研究表明,当引入适当的势高振荡时,隧穿概率会显著提高。在我们称之为 "教育者-开发者对话 "的合作方法的推动下,我们推出了软件 Quantum Composer 的更新版本。出于教育目的,我们将一维薛定谔方程的两个最低能量状态映射到布洛赫球表示法中,从而为相关的时间动力学提供了一幅相当清晰直观的物理图景。
Modelling assisted tunneling on the Bloch sphere using the Quantum Composer
The Bloch sphere representation is a geometric model for all possible quantum states of a two-level system that can be used to describe the time dynamics of a qubit. As explicit application, we consider the time dynamics of a particle in a double-well potential. In particular, we adopt a recent method for off-resonant excitations, the so-called SUPER principle (Swing Up of the quantum emitter population) driven by periodic electromagnetic fields, to the context of quantum tunnelling. We show that the tunnelling probability can be enhanced significantly when an appropriate oscillation of the potential height is introduced. Driven by a collaborative approach we call educator-developer dialogue, an updated version of the software Quantum Composer is presented. For educational purposes, we map the two lowest energy states of the 1D-Schrödinger equation to the Bloch sphere representation, leading to a rather clear and intuitive physical picture for the pertinent time dynamics.
期刊介绍:
European Journal of Physics is a journal of the European Physical Society and its primary mission is to assist in maintaining and improving the standard of taught physics in universities and other institutes of higher education.
Authors submitting articles must indicate the usefulness of their material to physics education and make clear the level of readership (undergraduate or graduate) for which the article is intended. Submissions that omit this information or which, in the publisher''s opinion, do not contribute to the above mission will not be considered for publication.
To this end, we welcome articles that provide original insights and aim to enhance learning in one or more areas of physics. They should normally include at least one of the following:
Explanations of how contemporary research can inform the understanding of physics at university level: for example, a survey of a research field at a level accessible to students, explaining how it illustrates some general principles.
Original insights into the derivation of results. These should be of some general interest, consisting of more than corrections to textbooks.
Descriptions of novel laboratory exercises illustrating new techniques of general interest. Those based on relatively inexpensive equipment are especially welcome.
Articles of a scholarly or reflective nature that are aimed to be of interest to, and at a level appropriate for, physics students or recent graduates.
Descriptions of successful and original student projects, experimental, theoretical or computational.
Discussions of the history, philosophy and epistemology of physics, at a level accessible to physics students and teachers.
Reports of new developments in physics curricula and the techniques for teaching physics.
Physics Education Research reports: articles that provide original experimental and/or theoretical research contributions that directly relate to the teaching and learning of university-level physics.