{"title":"确定有效载荷大小,以便在网络断开后快速重传 MQTT 数据包","authors":"Marco Domingues, José N. Faria, David Portugal","doi":"10.1186/s13638-023-02327-3","DOIUrl":null,"url":null,"abstract":"<p>The Internet of Things (IoT) is spreading rapidly around the world, and Message Queue Telemetry Transport (MQTT) is one of the main protocols used to explore device-to-device (D2D) communication. The industry typically requires communication systems that can transmit data continuously while optimizing both bandwidth and transmission time. Due to the vast amount of data that can be lost, companies often find that even short periods of network downtime lead to significant costs. In this paper, we propose a retransmission mechanism to allow sensor nodes to relay missing data via MQTT to a local server when it reconnects after an unexpected disconnection. To assess its performance, several tests in a digital healthcare use case scenario have been designed. Since the procedure involves transferring a considerable amount of data, our main goal is to determine the maximum payload of each message to restore the missing information, while minimizing the retransmission time without information loss.</p>","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"51 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensioning payload size for fast retransmission of MQTT packets in the wake of network disconnections\",\"authors\":\"Marco Domingues, José N. Faria, David Portugal\",\"doi\":\"10.1186/s13638-023-02327-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Internet of Things (IoT) is spreading rapidly around the world, and Message Queue Telemetry Transport (MQTT) is one of the main protocols used to explore device-to-device (D2D) communication. The industry typically requires communication systems that can transmit data continuously while optimizing both bandwidth and transmission time. Due to the vast amount of data that can be lost, companies often find that even short periods of network downtime lead to significant costs. In this paper, we propose a retransmission mechanism to allow sensor nodes to relay missing data via MQTT to a local server when it reconnects after an unexpected disconnection. To assess its performance, several tests in a digital healthcare use case scenario have been designed. Since the procedure involves transferring a considerable amount of data, our main goal is to determine the maximum payload of each message to restore the missing information, while minimizing the retransmission time without information loss.</p>\",\"PeriodicalId\":12040,\"journal\":{\"name\":\"EURASIP Journal on Wireless Communications and Networking\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Wireless Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13638-023-02327-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13638-023-02327-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dimensioning payload size for fast retransmission of MQTT packets in the wake of network disconnections
The Internet of Things (IoT) is spreading rapidly around the world, and Message Queue Telemetry Transport (MQTT) is one of the main protocols used to explore device-to-device (D2D) communication. The industry typically requires communication systems that can transmit data continuously while optimizing both bandwidth and transmission time. Due to the vast amount of data that can be lost, companies often find that even short periods of network downtime lead to significant costs. In this paper, we propose a retransmission mechanism to allow sensor nodes to relay missing data via MQTT to a local server when it reconnects after an unexpected disconnection. To assess its performance, several tests in a digital healthcare use case scenario have been designed. Since the procedure involves transferring a considerable amount of data, our main goal is to determine the maximum payload of each message to restore the missing information, while minimizing the retransmission time without information loss.
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.