Amit Shachaf, Kevin Manbeck, Guang Yang, Catherine Shachaf
{"title":"分子皮肤荧光成像:评估早期黑色素瘤发展的工具。","authors":"Amit Shachaf, Kevin Manbeck, Guang Yang, Catherine Shachaf","doi":"10.1111/pcmr.13159","DOIUrl":null,"url":null,"abstract":"<p>A novel approach to melanoma diagnosis—in vivo molecular skin fluorescence imaging (mSFI)—was developed to identify premalignant changes in the form of tissue remodeling related to melanoma development in humans by imaging the proximal microenvironment of lesions. The method was tested using a fluorescent peptide (ORL-1) which binds to αvβ3 integrin, a molecule associated with invasive melanoma development. A cut off score of 7 was established, differentiating melanomas from nonmelanoma nevi with 100% sensitivity, and 95.7% specificity, while identifying dysplastic nevi with the potential for melanoma development.</p>","PeriodicalId":219,"journal":{"name":"Pigment Cell & Melanoma Research","volume":"37 3","pages":"372-377"},"PeriodicalIF":3.9000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pcmr.13159","citationCount":"0","resultStr":"{\"title\":\"Molecular skin fluorescence imaging: A tool for evaluating early melanoma development\",\"authors\":\"Amit Shachaf, Kevin Manbeck, Guang Yang, Catherine Shachaf\",\"doi\":\"10.1111/pcmr.13159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel approach to melanoma diagnosis—in vivo molecular skin fluorescence imaging (mSFI)—was developed to identify premalignant changes in the form of tissue remodeling related to melanoma development in humans by imaging the proximal microenvironment of lesions. The method was tested using a fluorescent peptide (ORL-1) which binds to αvβ3 integrin, a molecule associated with invasive melanoma development. A cut off score of 7 was established, differentiating melanomas from nonmelanoma nevi with 100% sensitivity, and 95.7% specificity, while identifying dysplastic nevi with the potential for melanoma development.</p>\",\"PeriodicalId\":219,\"journal\":{\"name\":\"Pigment Cell & Melanoma Research\",\"volume\":\"37 3\",\"pages\":\"372-377\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pcmr.13159\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pigment Cell & Melanoma Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13159\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment Cell & Melanoma Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13159","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Molecular skin fluorescence imaging: A tool for evaluating early melanoma development
A novel approach to melanoma diagnosis—in vivo molecular skin fluorescence imaging (mSFI)—was developed to identify premalignant changes in the form of tissue remodeling related to melanoma development in humans by imaging the proximal microenvironment of lesions. The method was tested using a fluorescent peptide (ORL-1) which binds to αvβ3 integrin, a molecule associated with invasive melanoma development. A cut off score of 7 was established, differentiating melanomas from nonmelanoma nevi with 100% sensitivity, and 95.7% specificity, while identifying dysplastic nevi with the potential for melanoma development.
期刊介绍:
Pigment Cell & Melanoma Researchpublishes manuscripts on all aspects of pigment cells including development, cell and molecular biology, genetics, diseases of pigment cells including melanoma. Papers that provide insights into the causes and progression of melanoma including the process of metastasis and invasion, proliferation, senescence, apoptosis or gene regulation are especially welcome, as are papers that use the melanocyte system to answer questions of general biological relevance. Papers that are purely descriptive or make only minor advances to our knowledge of pigment cells or melanoma in particular are not suitable for this journal. Keywords
Pigment Cell & Melanoma Research, cell biology, melatonin, biochemistry, chemistry, comparative biology, dermatology, developmental biology, genetics, hormones, intracellular signalling, melanoma, molecular biology, ocular and extracutaneous melanin, pharmacology, photobiology, physics, pigmentary disorders