使用城市污水的赛道池塘中的 Synechocystis MT_a24 产生聚-β-羟基丁酸。

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied Microbiology and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-01-05 DOI:10.1007/s00253-023-12924-3
Tomáš Grivalský, Gergely Ernő Lakatos, Karolína Štěrbová, João Artur Câmara Manoel, Romana Beloša, Petra Divoká, Julian Kopp, Ricarda Kriechbaum, Oliver Spadiut, Alexander Zwirzitz, Kevin Trenzinger, Jiří Masojídek
{"title":"使用城市污水的赛道池塘中的 Synechocystis MT_a24 产生聚-β-羟基丁酸。","authors":"Tomáš Grivalský, Gergely Ernő Lakatos, Karolína Štěrbová, João Artur Câmara Manoel, Romana Beloša, Petra Divoká, Julian Kopp, Ricarda Kriechbaum, Oliver Spadiut, Alexander Zwirzitz, Kevin Trenzinger, Jiří Masojídek","doi":"10.1007/s00253-023-12924-3","DOIUrl":null,"url":null,"abstract":"<p><p>Poly-β-hydroxybutyrate (PHB) is a potential source of biodegradable plastics that are environmentally friendly due to their complete degradation to water and carbon dioxide. This study aimed to investigate PHB production in the cyanobacterium Synechocystis sp. PCC6714 MT_a24 in an outdoor bioreactor using urban wastewater as a sole nutrient source. The culture was grown in a thin-layer raceway pond with a working volume of 100 L, reaching a biomass density of up to 3.5 g L<sup>-1</sup> of cell dry weight (CDW). The maximum PHB content was found under nutrient-limiting conditions in the late stationary phase, reaching 23.7 ± 2.2% PHB per CDW. These data are one of the highest reported for photosynthetic production of PHB by cyanobacteria, moreover using urban wastewater in pilot-scale cultivation which multiplies the potential of sustainable cultivation approaches. Contamination by grazers (Poterioochromonas malhamensis) was managed by culturing Synechocystis in a highly alkaline environment (pH about 10.5) which did not significantly affect the culture growth. Furthermore, the strain MT_a24 showed significant wastewater nutrient remediation removing about 72% of nitrogen and 67% of phosphorus. These trials demonstrate that the photosynthetic production of PHB by Synechocystis sp. PCC6714 MT_a24 in the outdoor thin-layer bioreactor using urban wastewater and ambient carbon dioxide. It shows a promising approach for the cost-effective and sustainable production of biodegradable carbon-negative plastics. KEY POINTS: • High PHB production by cyanobacteria in outdoor raceway pond • Urban wastewater used as a sole source of nutrients for phototrophic growth • Potential for cost-effective and sustainable production of biodegradable plastics.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly-β-hydroxybutyrate production by Synechocystis MT_a24 in a raceway pond using urban wastewater.\",\"authors\":\"Tomáš Grivalský, Gergely Ernő Lakatos, Karolína Štěrbová, João Artur Câmara Manoel, Romana Beloša, Petra Divoká, Julian Kopp, Ricarda Kriechbaum, Oliver Spadiut, Alexander Zwirzitz, Kevin Trenzinger, Jiří Masojídek\",\"doi\":\"10.1007/s00253-023-12924-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poly-β-hydroxybutyrate (PHB) is a potential source of biodegradable plastics that are environmentally friendly due to their complete degradation to water and carbon dioxide. This study aimed to investigate PHB production in the cyanobacterium Synechocystis sp. PCC6714 MT_a24 in an outdoor bioreactor using urban wastewater as a sole nutrient source. The culture was grown in a thin-layer raceway pond with a working volume of 100 L, reaching a biomass density of up to 3.5 g L<sup>-1</sup> of cell dry weight (CDW). The maximum PHB content was found under nutrient-limiting conditions in the late stationary phase, reaching 23.7 ± 2.2% PHB per CDW. These data are one of the highest reported for photosynthetic production of PHB by cyanobacteria, moreover using urban wastewater in pilot-scale cultivation which multiplies the potential of sustainable cultivation approaches. Contamination by grazers (Poterioochromonas malhamensis) was managed by culturing Synechocystis in a highly alkaline environment (pH about 10.5) which did not significantly affect the culture growth. Furthermore, the strain MT_a24 showed significant wastewater nutrient remediation removing about 72% of nitrogen and 67% of phosphorus. These trials demonstrate that the photosynthetic production of PHB by Synechocystis sp. PCC6714 MT_a24 in the outdoor thin-layer bioreactor using urban wastewater and ambient carbon dioxide. It shows a promising approach for the cost-effective and sustainable production of biodegradable carbon-negative plastics. KEY POINTS: • High PHB production by cyanobacteria in outdoor raceway pond • Urban wastewater used as a sole source of nutrients for phototrophic growth • Potential for cost-effective and sustainable production of biodegradable plastics.</p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00253-023-12924-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-023-12924-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

聚-β-羟基丁酸(PHB)是生物降解塑料的一种潜在来源,由于其可完全降解为水和二氧化碳,因此对环境非常友好。本研究旨在调查蓝藻 Synechocystis sp. PCC6714 MT_a24 在室外生物反应器中以城市污水为唯一营养源生产 PHB 的情况。培养物在工作容积为 100 升的薄层赛道池中生长,细胞干重(CDW)的生物量密度可达 3.5 克/升。在营养限制条件下,PHB 含量在静止后期达到最高,每 CDW 的 PHB 含量为 23.7 ± 2.2%。这些数据是蓝藻光合作用产生 PHB 含量最高的报道之一,而且是利用城市污水进行的中试规模的培养,从而成倍地提高了可持续培养方法的潜力。通过在高碱性环境(pH 值约为 10.5)中培养 Synechocystis,控制了食草动物(Poterioochromonas malhamensis)对培养物生长的影响。此外,菌株 MT_a24 对废水养分的修复效果显著,可去除约 72% 的氮和 67% 的磷。这些试验证明了 Synechocystis sp. PCC6714 MT_a24 在室外薄层生物反应器中利用城市污水和环境二氧化碳进行光合作用生产 PHB。这为经济、可持续地生产可生物降解的负碳塑料提供了一种可行的方法。要点- 室外赛道池塘中蓝藻的 PHB 产量高 - 城市污水被用作光营养生长的唯一营养源 - 具有成本效益和可持续生产生物降解塑料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poly-β-hydroxybutyrate production by Synechocystis MT_a24 in a raceway pond using urban wastewater.

Poly-β-hydroxybutyrate (PHB) is a potential source of biodegradable plastics that are environmentally friendly due to their complete degradation to water and carbon dioxide. This study aimed to investigate PHB production in the cyanobacterium Synechocystis sp. PCC6714 MT_a24 in an outdoor bioreactor using urban wastewater as a sole nutrient source. The culture was grown in a thin-layer raceway pond with a working volume of 100 L, reaching a biomass density of up to 3.5 g L-1 of cell dry weight (CDW). The maximum PHB content was found under nutrient-limiting conditions in the late stationary phase, reaching 23.7 ± 2.2% PHB per CDW. These data are one of the highest reported for photosynthetic production of PHB by cyanobacteria, moreover using urban wastewater in pilot-scale cultivation which multiplies the potential of sustainable cultivation approaches. Contamination by grazers (Poterioochromonas malhamensis) was managed by culturing Synechocystis in a highly alkaline environment (pH about 10.5) which did not significantly affect the culture growth. Furthermore, the strain MT_a24 showed significant wastewater nutrient remediation removing about 72% of nitrogen and 67% of phosphorus. These trials demonstrate that the photosynthetic production of PHB by Synechocystis sp. PCC6714 MT_a24 in the outdoor thin-layer bioreactor using urban wastewater and ambient carbon dioxide. It shows a promising approach for the cost-effective and sustainable production of biodegradable carbon-negative plastics. KEY POINTS: • High PHB production by cyanobacteria in outdoor raceway pond • Urban wastewater used as a sole source of nutrients for phototrophic growth • Potential for cost-effective and sustainable production of biodegradable plastics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
期刊最新文献
Development of fluorescence-linked immunosorbent assay for rapid detection of Staphylococcus aureus. Novel reaction systems for catalytic synthesis of structured phospholipids. Motility of Acinetobacter baumannii: regulatory systems and controlling strategies Co-metabolic degradation and metabolite detection of hexabromocyclododecane by Shewanella oneidensis MR-1 Chitosan-based matrix as a carrier for bacteriophages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1