{"title":"通过时空正则化反转实现运动分辨无参照全息成像","authors":"Yunhui Gao and Liangcai Cao","doi":"10.1364/optica.506572","DOIUrl":null,"url":null,"abstract":"Holography is a powerful technique that records the amplitude and phase of an optical field simultaneously, enabling a variety of applications such as label-free biomedical analysis and coherent diffraction imaging. Holographic recording without a reference wave has been long pursued because it obviates the high experimental requirements of conventional interferometric methods. However, due to the ill-posed nature of the underlying phase retrieval problem, reference-free holographic imaging is faced with an inherent tradeoff between imaging fidelity and temporal resolution. Here, we propose a general computational framework, termed spatiotemporally regularized inversion (STRIVER), to achieve motion-resolved, reference-free holographic imaging with high fidelity. Specifically, STRIVER leverages signal priors in the spatiotemporal domain to jointly eliminate phase ambiguities and motion artifacts, and, when combined with diversity measurement schemes, produces a physically reliable, time-resolved holographic video from a series of intensity-only measurements. We experimentally demonstrate STRIVER in near-field ptychography, where dynamic holographic imaging of freely swimming paramecia is performed at a framerate-limited speed of 112 fps. The proposed method can be potentially extended to other measurement schemes, spectral regimes, and computational imaging modalities, pushing the temporal resolution toward higher limits.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"11 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion-resolved, reference-free holographic imaging via spatiotemporally regularized inversion\",\"authors\":\"Yunhui Gao and Liangcai Cao\",\"doi\":\"10.1364/optica.506572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Holography is a powerful technique that records the amplitude and phase of an optical field simultaneously, enabling a variety of applications such as label-free biomedical analysis and coherent diffraction imaging. Holographic recording without a reference wave has been long pursued because it obviates the high experimental requirements of conventional interferometric methods. However, due to the ill-posed nature of the underlying phase retrieval problem, reference-free holographic imaging is faced with an inherent tradeoff between imaging fidelity and temporal resolution. Here, we propose a general computational framework, termed spatiotemporally regularized inversion (STRIVER), to achieve motion-resolved, reference-free holographic imaging with high fidelity. Specifically, STRIVER leverages signal priors in the spatiotemporal domain to jointly eliminate phase ambiguities and motion artifacts, and, when combined with diversity measurement schemes, produces a physically reliable, time-resolved holographic video from a series of intensity-only measurements. We experimentally demonstrate STRIVER in near-field ptychography, where dynamic holographic imaging of freely swimming paramecia is performed at a framerate-limited speed of 112 fps. The proposed method can be potentially extended to other measurement schemes, spectral regimes, and computational imaging modalities, pushing the temporal resolution toward higher limits.\",\"PeriodicalId\":19515,\"journal\":{\"name\":\"Optica\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/optica.506572\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.506572","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Motion-resolved, reference-free holographic imaging via spatiotemporally regularized inversion
Holography is a powerful technique that records the amplitude and phase of an optical field simultaneously, enabling a variety of applications such as label-free biomedical analysis and coherent diffraction imaging. Holographic recording without a reference wave has been long pursued because it obviates the high experimental requirements of conventional interferometric methods. However, due to the ill-posed nature of the underlying phase retrieval problem, reference-free holographic imaging is faced with an inherent tradeoff between imaging fidelity and temporal resolution. Here, we propose a general computational framework, termed spatiotemporally regularized inversion (STRIVER), to achieve motion-resolved, reference-free holographic imaging with high fidelity. Specifically, STRIVER leverages signal priors in the spatiotemporal domain to jointly eliminate phase ambiguities and motion artifacts, and, when combined with diversity measurement schemes, produces a physically reliable, time-resolved holographic video from a series of intensity-only measurements. We experimentally demonstrate STRIVER in near-field ptychography, where dynamic holographic imaging of freely swimming paramecia is performed at a framerate-limited speed of 112 fps. The proposed method can be potentially extended to other measurement schemes, spectral regimes, and computational imaging modalities, pushing the temporal resolution toward higher limits.
期刊介绍:
Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.