用于张量网络的 Cytnx 库

Kai-Hsin Wu, Chang-Teng Lin, Ke Hsu, Hao-Ti Hung, Manuel Schneider, Chia-Min Chung, Ying-Jer Kao, Pochung Chen
{"title":"用于张量网络的 Cytnx 库","authors":"Kai-Hsin Wu, Chang-Teng Lin, Ke Hsu, Hao-Ti Hung, Manuel Schneider, Chia-Min Chung, Ying-Jer Kao, Pochung Chen","doi":"arxiv-2401.01921","DOIUrl":null,"url":null,"abstract":"We introduce a tensor network library designed for classical and quantum\nphysics simulations called Cytnx (pronounced as sci-tens). This library\nprovides almost an identical interface and syntax for both C++ and Python,\nallowing users to effortlessly switch between two languages. Aiming at a quick\nlearning process for new users of tensor network algorithms, the interfaces\nresemble the popular Python scientific libraries like NumPy, Scipy, and\nPyTorch. Not only multiple global Abelian symmetries can be easily defined and\nimplemented, Cytnx also provides a new tool called Network that allows users to\nstore large tensor networks and perform tensor network contractions in an\noptimal order automatically. With the integration of cuQuantum, tensor\ncalculations can also be executed efficiently on GPUs. We present benchmark\nresults for tensor operations on both devices, CPU and GPU. We also discuss\nfeatures and higher-level interfaces to be added in the future.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cytnx Library for Tensor Networks\",\"authors\":\"Kai-Hsin Wu, Chang-Teng Lin, Ke Hsu, Hao-Ti Hung, Manuel Schneider, Chia-Min Chung, Ying-Jer Kao, Pochung Chen\",\"doi\":\"arxiv-2401.01921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a tensor network library designed for classical and quantum\\nphysics simulations called Cytnx (pronounced as sci-tens). This library\\nprovides almost an identical interface and syntax for both C++ and Python,\\nallowing users to effortlessly switch between two languages. Aiming at a quick\\nlearning process for new users of tensor network algorithms, the interfaces\\nresemble the popular Python scientific libraries like NumPy, Scipy, and\\nPyTorch. Not only multiple global Abelian symmetries can be easily defined and\\nimplemented, Cytnx also provides a new tool called Network that allows users to\\nstore large tensor networks and perform tensor network contractions in an\\noptimal order automatically. With the integration of cuQuantum, tensor\\ncalculations can also be executed efficiently on GPUs. We present benchmark\\nresults for tensor operations on both devices, CPU and GPU. We also discuss\\nfeatures and higher-level interfaces to be added in the future.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.01921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.01921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍一个专为经典和量子物理模拟设计的张量网络库,名为 Cytnx(读作 sci-tens)。该库为 C++ 和 Python 提供了几乎完全相同的界面和语法,允许用户在两种语言之间轻松切换。为了让新用户快速掌握张量网络算法,该库的界面与 NumPy、Scipy 和 PyTorch 等流行的 Python 科学库相似。不仅可以轻松定义和实现多个全局阿贝尔对称性,Cytnx 还提供了一个名为 Network 的新工具,允许用户存储大型张量网络,并以最佳顺序自动执行张量网络收缩。随着 cuQuantum 的集成,张量计算也可以在 GPU 上高效执行。我们展示了在 CPU 和 GPU 这两种设备上进行张量运算的基准结果。我们还讨论了未来将添加的功能和更高级别的接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Cytnx Library for Tensor Networks
We introduce a tensor network library designed for classical and quantum physics simulations called Cytnx (pronounced as sci-tens). This library provides almost an identical interface and syntax for both C++ and Python, allowing users to effortlessly switch between two languages. Aiming at a quick learning process for new users of tensor network algorithms, the interfaces resemble the popular Python scientific libraries like NumPy, Scipy, and PyTorch. Not only multiple global Abelian symmetries can be easily defined and implemented, Cytnx also provides a new tool called Network that allows users to store large tensor networks and perform tensor network contractions in an optimal order automatically. With the integration of cuQuantum, tensor calculations can also be executed efficiently on GPUs. We present benchmark results for tensor operations on both devices, CPU and GPU. We also discuss features and higher-level interfaces to be added in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1