基于两阶段无人飞行器深度学习方法的松树枯萎病提取方法

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2024-01-01 DOI:10.1117/1.jrs.18.014503
Xin Huang, Weilin Gang, Jiayi Li, Zhili Wang, Qun Wang, Yuegang Liang
{"title":"基于两阶段无人飞行器深度学习方法的松树枯萎病提取方法","authors":"Xin Huang, Weilin Gang, Jiayi Li, Zhili Wang, Qun Wang, Yuegang Liang","doi":"10.1117/1.jrs.18.014503","DOIUrl":null,"url":null,"abstract":"Forestry pests pose a significant threat to forest health, making precise extraction of infested trees a vital aspect of forest protection. In recent years, deep learning has achieved substantial success in detecting infestations. However, when applying existing deep learning methods to infested tree detection, challenges arise, such as limited training samples and confusion between forest areas and artificial structures. To address these issues, this work proposes a two-stage hierarchical semi-supervised deep learning approach based on unmanned aerial vehicle visible images to achieve the individual extraction of each pine wilt disease (PWD). The approach can automatically detect the positions and crown extents of each infested tree. The comprehensive framework includes the following key steps: (a) considering the disparities in global image representation between forest areas and artificial structures, a scene classification network named MobileNetV3 is trained to effectively differentiate between forested regions and other artificial structures. (b) Considering the high cost of manually annotating and incomplete labeling of infested tree samples, a semi-supervised infested tree samples mining method is introduced, significantly reducing the workload of sample annotation. Ultimately, this method is integrated into the YOLOv7 object detection network, enabling rapid and reliable detection of infested trees. Experimental results demonstrate that, with a confidence threshold of 0.15 and using the semi-supervised sample mining framework, the number of samples increases from 53,046 to 93,544. Precision evaluation metrics indicate a 5.8% improvement in recall and a 2.6% increase in mean average precision@.5. The final test area prediction achieves an overall accuracy of over 80% and the recall rate of over 90%, indicating the effectiveness of the proposed method in PWD detection.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of pine wilt disease based on a two-stage unmanned aerial vehicle deep learning method\",\"authors\":\"Xin Huang, Weilin Gang, Jiayi Li, Zhili Wang, Qun Wang, Yuegang Liang\",\"doi\":\"10.1117/1.jrs.18.014503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forestry pests pose a significant threat to forest health, making precise extraction of infested trees a vital aspect of forest protection. In recent years, deep learning has achieved substantial success in detecting infestations. However, when applying existing deep learning methods to infested tree detection, challenges arise, such as limited training samples and confusion between forest areas and artificial structures. To address these issues, this work proposes a two-stage hierarchical semi-supervised deep learning approach based on unmanned aerial vehicle visible images to achieve the individual extraction of each pine wilt disease (PWD). The approach can automatically detect the positions and crown extents of each infested tree. The comprehensive framework includes the following key steps: (a) considering the disparities in global image representation between forest areas and artificial structures, a scene classification network named MobileNetV3 is trained to effectively differentiate between forested regions and other artificial structures. (b) Considering the high cost of manually annotating and incomplete labeling of infested tree samples, a semi-supervised infested tree samples mining method is introduced, significantly reducing the workload of sample annotation. Ultimately, this method is integrated into the YOLOv7 object detection network, enabling rapid and reliable detection of infested trees. Experimental results demonstrate that, with a confidence threshold of 0.15 and using the semi-supervised sample mining framework, the number of samples increases from 53,046 to 93,544. Precision evaluation metrics indicate a 5.8% improvement in recall and a 2.6% increase in mean average precision@.5. The final test area prediction achieves an overall accuracy of over 80% and the recall rate of over 90%, indicating the effectiveness of the proposed method in PWD detection.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.014503\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.014503","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

林业害虫对森林健康构成了重大威胁,因此,精确提取虫害树木是森林保护的一个重要方面。近年来,深度学习在虫害检测方面取得了巨大成功。然而,将现有的深度学习方法应用于虫害树木检测时,会遇到一些挑战,如训练样本有限、林区与人工结构混淆等。为解决这些问题,本研究提出了一种基于无人机可见光图像的两阶段分层半监督深度学习方法,以实现对每种松树枯萎病(PWD)的单独提取。该方法可自动检测每棵受侵染树木的位置和树冠范围。综合框架包括以下关键步骤:(a) 考虑到森林区域和人工结构之间在全局图像表示上的差异,训练一个名为 MobileNetV3 的场景分类网络,以有效区分森林区域和其他人工结构。(b) 考虑到人工标注成本高、出没树木样本标注不完整等问题,引入了一种半监督出没树木样本挖掘方法,大大减少了样本标注的工作量。最终,该方法被集成到 YOLOv7 物体检测网络中,实现了对侵染树的快速、可靠检测。实验结果表明,在置信度阈值为 0.15 的情况下,使用半监督样本挖掘框架,样本数量从 53,046 个增加到 93,544 个。精度评估指标表明,召回率提高了 5.8%,平均平均精度@.5 提高了 2.6%。最终测试区域预测的总体准确率超过了 80%,召回率超过了 90%,这表明所提出的方法在检测公共工程破坏方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extraction of pine wilt disease based on a two-stage unmanned aerial vehicle deep learning method
Forestry pests pose a significant threat to forest health, making precise extraction of infested trees a vital aspect of forest protection. In recent years, deep learning has achieved substantial success in detecting infestations. However, when applying existing deep learning methods to infested tree detection, challenges arise, such as limited training samples and confusion between forest areas and artificial structures. To address these issues, this work proposes a two-stage hierarchical semi-supervised deep learning approach based on unmanned aerial vehicle visible images to achieve the individual extraction of each pine wilt disease (PWD). The approach can automatically detect the positions and crown extents of each infested tree. The comprehensive framework includes the following key steps: (a) considering the disparities in global image representation between forest areas and artificial structures, a scene classification network named MobileNetV3 is trained to effectively differentiate between forested regions and other artificial structures. (b) Considering the high cost of manually annotating and incomplete labeling of infested tree samples, a semi-supervised infested tree samples mining method is introduced, significantly reducing the workload of sample annotation. Ultimately, this method is integrated into the YOLOv7 object detection network, enabling rapid and reliable detection of infested trees. Experimental results demonstrate that, with a confidence threshold of 0.15 and using the semi-supervised sample mining framework, the number of samples increases from 53,046 to 93,544. Precision evaluation metrics indicate a 5.8% improvement in recall and a 2.6% increase in mean average precision@.5. The final test area prediction achieves an overall accuracy of over 80% and the recall rate of over 90%, indicating the effectiveness of the proposed method in PWD detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Few-shot synthetic aperture radar object detection algorithm based on meta-learning and variational inference Object-based strategy for generating high-resolution four-dimensional thermal surface models of buildings based on integration of visible and thermal unmanned aerial vehicle imagery Frequent oversights in on-orbit modulation transfer function estimation of optical imager onboard EO satellites Comprehensive comparison of different gridded precipitation products over geographic regions of Türkiye Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1