{"title":"不同森林疏伐强度对固碳率的长期影响以及在减缓气候变化行动中的潜在用途","authors":"Petros Ganatsas, Marianthi Tsakaldimi, Theodoros Karydopoulos, Alexandros Papaemannuil, Sotirios Papadopoulos","doi":"10.1007/s11027-023-10102-4","DOIUrl":null,"url":null,"abstract":"<p>Recent model projections and many research results along the world suggest that forests could be significant carbon sinks or sources in the future, contributing in such a way to global warming mitigation. Conversion of coppice forest to high forest may play an important role towards this direction. However, the most effective way for this to succeed is questionable. This study examines the long-term effect of different intensity thinning (light 10% of the volume removal every 5–10 years, moderate 15%, and heavy 20%) on biomass, and on all the carbon pool categories (according to IPCC), as well as the accumulation rates, in a 77-year-old oak ecosystem, which has been subjected to conversion from coppice to high forest through repeating thinning since 1973. The research included numerous field tree measurements, and a systematic sampling of standing and fallen dead wood, litter, and surface soil up to 50 cm depth. Data analysis shows that heavy and moderate thinning result in a greater accumulation of carbon in the aboveground ecosystem pools, especially in living biomass, with an average annual rate of 1.62 Mg C ha<sup>−1</sup> carbon accumulation in living aboveground tree biomass, resulting in a carbon pool of 125.04Mg C ha<sup>−1</sup> at the age of 77 years. Dead wood volume was found low in all thinning treatment with significant differences between the thinning intensities. Litter carbon pool was also affected by moderate and heavy thinning, while soil carbon was unaffected by the treatments. The findings could contribute on climate change mitigation actions if they are adopted in forest management plans of similar types of forest ecosystems; a periodical thinning application of removal ca. 20% of wood volume is suggested.</p>","PeriodicalId":54387,"journal":{"name":"Mitigation and Adaptation Strategies for Global Change","volume":"47 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term effect of different forest thinning intensity on carbon sequestration rates and potential uses in climate change mitigation actions\",\"authors\":\"Petros Ganatsas, Marianthi Tsakaldimi, Theodoros Karydopoulos, Alexandros Papaemannuil, Sotirios Papadopoulos\",\"doi\":\"10.1007/s11027-023-10102-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent model projections and many research results along the world suggest that forests could be significant carbon sinks or sources in the future, contributing in such a way to global warming mitigation. Conversion of coppice forest to high forest may play an important role towards this direction. However, the most effective way for this to succeed is questionable. This study examines the long-term effect of different intensity thinning (light 10% of the volume removal every 5–10 years, moderate 15%, and heavy 20%) on biomass, and on all the carbon pool categories (according to IPCC), as well as the accumulation rates, in a 77-year-old oak ecosystem, which has been subjected to conversion from coppice to high forest through repeating thinning since 1973. The research included numerous field tree measurements, and a systematic sampling of standing and fallen dead wood, litter, and surface soil up to 50 cm depth. Data analysis shows that heavy and moderate thinning result in a greater accumulation of carbon in the aboveground ecosystem pools, especially in living biomass, with an average annual rate of 1.62 Mg C ha<sup>−1</sup> carbon accumulation in living aboveground tree biomass, resulting in a carbon pool of 125.04Mg C ha<sup>−1</sup> at the age of 77 years. Dead wood volume was found low in all thinning treatment with significant differences between the thinning intensities. Litter carbon pool was also affected by moderate and heavy thinning, while soil carbon was unaffected by the treatments. The findings could contribute on climate change mitigation actions if they are adopted in forest management plans of similar types of forest ecosystems; a periodical thinning application of removal ca. 20% of wood volume is suggested.</p>\",\"PeriodicalId\":54387,\"journal\":{\"name\":\"Mitigation and Adaptation Strategies for Global Change\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitigation and Adaptation Strategies for Global Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11027-023-10102-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitigation and Adaptation Strategies for Global Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11027-023-10102-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Long-term effect of different forest thinning intensity on carbon sequestration rates and potential uses in climate change mitigation actions
Recent model projections and many research results along the world suggest that forests could be significant carbon sinks or sources in the future, contributing in such a way to global warming mitigation. Conversion of coppice forest to high forest may play an important role towards this direction. However, the most effective way for this to succeed is questionable. This study examines the long-term effect of different intensity thinning (light 10% of the volume removal every 5–10 years, moderate 15%, and heavy 20%) on biomass, and on all the carbon pool categories (according to IPCC), as well as the accumulation rates, in a 77-year-old oak ecosystem, which has been subjected to conversion from coppice to high forest through repeating thinning since 1973. The research included numerous field tree measurements, and a systematic sampling of standing and fallen dead wood, litter, and surface soil up to 50 cm depth. Data analysis shows that heavy and moderate thinning result in a greater accumulation of carbon in the aboveground ecosystem pools, especially in living biomass, with an average annual rate of 1.62 Mg C ha−1 carbon accumulation in living aboveground tree biomass, resulting in a carbon pool of 125.04Mg C ha−1 at the age of 77 years. Dead wood volume was found low in all thinning treatment with significant differences between the thinning intensities. Litter carbon pool was also affected by moderate and heavy thinning, while soil carbon was unaffected by the treatments. The findings could contribute on climate change mitigation actions if they are adopted in forest management plans of similar types of forest ecosystems; a periodical thinning application of removal ca. 20% of wood volume is suggested.
期刊介绍:
The Earth''s biosphere is being transformed by various anthropogenic activities. Mitigation and Adaptation Strategies for Global Change addresses a wide range of environment, economic and energy topics and timely issues including global climate change, stratospheric ozone depletion, acid deposition, eutrophication of terrestrial and aquatic ecosystems, species extinction and loss of biological diversity, deforestation and forest degradation, desertification, soil resource degradation, land-use change, sea level rise, destruction of coastal zones, depletion of fresh water and marine fisheries, loss of wetlands and riparian zones and hazardous waste management.
Response options to mitigate these threats or to adapt to changing environs are needed to ensure a sustainable biosphere for all forms of life. To that end, Mitigation and Adaptation Strategies for Global Change provides a forum to encourage the conceptualization, critical examination and debate regarding response options. The aim of this journal is to provide a forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales. One of the primary goals of this journal is to contribute to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated.