diGRASS:通过保留频谱的对称化实现有向图谱稀疏化

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Knowledge Discovery from Data Pub Date : 2024-01-04 DOI:10.1145/3639568
Ying Zhang, Zhiqiang Zhao, Zhuo Feng
{"title":"diGRASS:通过保留频谱的对称化实现有向图谱稀疏化","authors":"Ying Zhang, Zhiqiang Zhao, Zhuo Feng","doi":"10.1145/3639568","DOIUrl":null,"url":null,"abstract":"<p>Recent <i>spectral graph sparsification</i> research aims to construct ultra-sparse subgraphs for preserving the original graph spectral (structural) properties, such as the first few Laplacian eigenvalues and eigenvectors, which has led to the development of a variety of nearly-linear time numerical and graph algorithms. However, there is very limited progress for spectral sparsification of directed graphs. In this work, we prove the existence of nearly-linear-sized spectral sparsifiers for directed graphs under certain conditions. Furthermore, we introduce a practically-efficient spectral algorithm (diGRASS) for sparsifying real-world, large-scale directed graphs leveraging spectral matrix perturbation analysis. The proposed method has been evaluated using a variety of directed graphs obtained from real-world applications, showing promising results for solving directed graph Laplacians, spectral partitioning of directed graphs, and approximately computing (personalized) PageRank vectors.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"209 1 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"diGRASS: Directed Graph Spectral Sparsification via Spectrum-Preserving Symmetrization\",\"authors\":\"Ying Zhang, Zhiqiang Zhao, Zhuo Feng\",\"doi\":\"10.1145/3639568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent <i>spectral graph sparsification</i> research aims to construct ultra-sparse subgraphs for preserving the original graph spectral (structural) properties, such as the first few Laplacian eigenvalues and eigenvectors, which has led to the development of a variety of nearly-linear time numerical and graph algorithms. However, there is very limited progress for spectral sparsification of directed graphs. In this work, we prove the existence of nearly-linear-sized spectral sparsifiers for directed graphs under certain conditions. Furthermore, we introduce a practically-efficient spectral algorithm (diGRASS) for sparsifying real-world, large-scale directed graphs leveraging spectral matrix perturbation analysis. The proposed method has been evaluated using a variety of directed graphs obtained from real-world applications, showing promising results for solving directed graph Laplacians, spectral partitioning of directed graphs, and approximately computing (personalized) PageRank vectors.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"209 1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3639568\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3639568","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

最近的图谱稀疏化研究旨在构建超稀疏子图,以保留原始图谱(结构)特性,如前几个拉普拉奇特征值和特征向量,这导致了各种近线性时间数值和图算法的发展。然而,有向图的谱稀疏化研究进展非常有限。在这项工作中,我们证明了在特定条件下,有向图存在近线性大小的谱稀疏化器。此外,我们还引入了一种实用高效的光谱算法(diGRASS),利用光谱矩阵扰动分析对现实世界中的大规模有向图进行稀疏化处理。我们使用从实际应用中获取的各种有向图对所提出的方法进行了评估,结果表明该方法在求解有向图拉普拉斯、有向图谱分区以及近似计算(个性化)PageRank 向量等方面具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
diGRASS: Directed Graph Spectral Sparsification via Spectrum-Preserving Symmetrization

Recent spectral graph sparsification research aims to construct ultra-sparse subgraphs for preserving the original graph spectral (structural) properties, such as the first few Laplacian eigenvalues and eigenvectors, which has led to the development of a variety of nearly-linear time numerical and graph algorithms. However, there is very limited progress for spectral sparsification of directed graphs. In this work, we prove the existence of nearly-linear-sized spectral sparsifiers for directed graphs under certain conditions. Furthermore, we introduce a practically-efficient spectral algorithm (diGRASS) for sparsifying real-world, large-scale directed graphs leveraging spectral matrix perturbation analysis. The proposed method has been evaluated using a variety of directed graphs obtained from real-world applications, showing promising results for solving directed graph Laplacians, spectral partitioning of directed graphs, and approximately computing (personalized) PageRank vectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Knowledge Discovery from Data
ACM Transactions on Knowledge Discovery from Data COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.70
自引率
5.60%
发文量
172
审稿时长
3 months
期刊介绍: TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.
期刊最新文献
Structural properties on scale-free tree network with an ultra-large diameter Learning Individual Treatment Effects under Heterogeneous Interference in Networks Deconfounding User Preference in Recommendation Systems through Implicit and Explicit Feedback Interdisciplinary Fairness in Imbalanced Research Proposal Topic Inference: A Hierarchical Transformer-based Method with Selective Interpolation A Compact Vulnerability Knowledge Graph for Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1