Lisa-Marie Legault, Mélanie Breton-Larrivée, Alexandra Langford-Avelar, Anthony Lemieux, Serge McGraw
{"title":"妊娠晚期小鼠胎盘中 DNA 甲基化和基因表达的性别差异","authors":"Lisa-Marie Legault, Mélanie Breton-Larrivée, Alexandra Langford-Avelar, Anthony Lemieux, Serge McGraw","doi":"10.1186/s13293-023-00577-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The placenta is vital for fetal development and its contributions to various developmental issues, such as pregnancy complications, fetal growth restriction, and maternal exposure, have been extensively studied in mice. The placenta forms mainly from fetal tissue and therefore has the same biological sex as the fetus it supports. Extensive research has delved into the placenta's involvement in pregnancy complications and future offspring development, with a notable emphasis on exploring sex-specific disparities. However, despite these investigations, sex-based disparities in epigenetic (e.g., DNA methylation) and transcriptomic features of the late-gestation mouse placenta remain largely unknown.</p><p><strong>Methods: </strong>We collected male and female mouse placentas at late gestation (E18.5, n = 3/sex) and performed next-generation sequencing to identify genome-wide sex differences in transcription and DNA methylation.</p><p><strong>Results: </strong>Our comparison between male and female revealed 358 differentially expressed genes (DEGs) on autosomes, which were associated with signaling pathways involved in transmembrane transport and the responses to viruses and external stimuli. X chromosome DEGs (n = 39) were associated with different pathways, including those regulating chromatin modification and small GTPase-mediated signal transduction. Differentially methylated regions (DMRs) were more common on the X chromosomes (n = 3756) than on autosomes (n = 1705). Interestingly, while most X chromosome DMRs had higher DNA methylation levels in female placentas and tended to be included in CpG dinucleotide-rich regions, 73% of autosomal DMRs had higher methylation levels in male placentas and were distant from CpG-rich regions. Several DEGs were correlated with DMRs. A subset of the DMRs present in late-stage placentas were already established in mid-gestation (E10.5) placentas (n = 348 DMRs on X chromosome and 19 DMRs on autosomes), while others were acquired later in placental development.</p><p><strong>Conclusion: </strong>Our study provides comprehensive lists of DEGs and DMRs between male and female that collectively cause profound differences in the DNA methylation and gene expression profiles of late-gestation mouse placentas. Our results demonstrate the importance of incorporating sex-specific analyses into epigenetic and transcription studies to enhance the accuracy and comprehensiveness of their conclusions and help address the significant knowledge gap regarding how sex differences influence placental function.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"2"},"PeriodicalIF":4.9000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770955/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sex-based disparities in DNA methylation and gene expression in late-gestation mouse placentas.\",\"authors\":\"Lisa-Marie Legault, Mélanie Breton-Larrivée, Alexandra Langford-Avelar, Anthony Lemieux, Serge McGraw\",\"doi\":\"10.1186/s13293-023-00577-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The placenta is vital for fetal development and its contributions to various developmental issues, such as pregnancy complications, fetal growth restriction, and maternal exposure, have been extensively studied in mice. The placenta forms mainly from fetal tissue and therefore has the same biological sex as the fetus it supports. Extensive research has delved into the placenta's involvement in pregnancy complications and future offspring development, with a notable emphasis on exploring sex-specific disparities. However, despite these investigations, sex-based disparities in epigenetic (e.g., DNA methylation) and transcriptomic features of the late-gestation mouse placenta remain largely unknown.</p><p><strong>Methods: </strong>We collected male and female mouse placentas at late gestation (E18.5, n = 3/sex) and performed next-generation sequencing to identify genome-wide sex differences in transcription and DNA methylation.</p><p><strong>Results: </strong>Our comparison between male and female revealed 358 differentially expressed genes (DEGs) on autosomes, which were associated with signaling pathways involved in transmembrane transport and the responses to viruses and external stimuli. X chromosome DEGs (n = 39) were associated with different pathways, including those regulating chromatin modification and small GTPase-mediated signal transduction. Differentially methylated regions (DMRs) were more common on the X chromosomes (n = 3756) than on autosomes (n = 1705). Interestingly, while most X chromosome DMRs had higher DNA methylation levels in female placentas and tended to be included in CpG dinucleotide-rich regions, 73% of autosomal DMRs had higher methylation levels in male placentas and were distant from CpG-rich regions. Several DEGs were correlated with DMRs. A subset of the DMRs present in late-stage placentas were already established in mid-gestation (E10.5) placentas (n = 348 DMRs on X chromosome and 19 DMRs on autosomes), while others were acquired later in placental development.</p><p><strong>Conclusion: </strong>Our study provides comprehensive lists of DEGs and DMRs between male and female that collectively cause profound differences in the DNA methylation and gene expression profiles of late-gestation mouse placentas. Our results demonstrate the importance of incorporating sex-specific analyses into epigenetic and transcription studies to enhance the accuracy and comprehensiveness of their conclusions and help address the significant knowledge gap regarding how sex differences influence placental function.</p>\",\"PeriodicalId\":8890,\"journal\":{\"name\":\"Biology of Sex Differences\",\"volume\":\"15 1\",\"pages\":\"2\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770955/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology of Sex Differences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13293-023-00577-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Sex Differences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13293-023-00577-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Sex-based disparities in DNA methylation and gene expression in late-gestation mouse placentas.
Background: The placenta is vital for fetal development and its contributions to various developmental issues, such as pregnancy complications, fetal growth restriction, and maternal exposure, have been extensively studied in mice. The placenta forms mainly from fetal tissue and therefore has the same biological sex as the fetus it supports. Extensive research has delved into the placenta's involvement in pregnancy complications and future offspring development, with a notable emphasis on exploring sex-specific disparities. However, despite these investigations, sex-based disparities in epigenetic (e.g., DNA methylation) and transcriptomic features of the late-gestation mouse placenta remain largely unknown.
Methods: We collected male and female mouse placentas at late gestation (E18.5, n = 3/sex) and performed next-generation sequencing to identify genome-wide sex differences in transcription and DNA methylation.
Results: Our comparison between male and female revealed 358 differentially expressed genes (DEGs) on autosomes, which were associated with signaling pathways involved in transmembrane transport and the responses to viruses and external stimuli. X chromosome DEGs (n = 39) were associated with different pathways, including those regulating chromatin modification and small GTPase-mediated signal transduction. Differentially methylated regions (DMRs) were more common on the X chromosomes (n = 3756) than on autosomes (n = 1705). Interestingly, while most X chromosome DMRs had higher DNA methylation levels in female placentas and tended to be included in CpG dinucleotide-rich regions, 73% of autosomal DMRs had higher methylation levels in male placentas and were distant from CpG-rich regions. Several DEGs were correlated with DMRs. A subset of the DMRs present in late-stage placentas were already established in mid-gestation (E10.5) placentas (n = 348 DMRs on X chromosome and 19 DMRs on autosomes), while others were acquired later in placental development.
Conclusion: Our study provides comprehensive lists of DEGs and DMRs between male and female that collectively cause profound differences in the DNA methylation and gene expression profiles of late-gestation mouse placentas. Our results demonstrate the importance of incorporating sex-specific analyses into epigenetic and transcription studies to enhance the accuracy and comprehensiveness of their conclusions and help address the significant knowledge gap regarding how sex differences influence placental function.
期刊介绍:
Biology of Sex Differences is a unique scientific journal focusing on sex differences in physiology, behavior, and disease from molecular to phenotypic levels, incorporating both basic and clinical research. The journal aims to enhance understanding of basic principles and facilitate the development of therapeutic and diagnostic tools specific to sex differences. As an open-access journal, it is the official publication of the Organization for the Study of Sex Differences and co-published by the Society for Women's Health Research.
Topical areas include, but are not limited to sex differences in: genomics; the microbiome; epigenetics; molecular and cell biology; tissue biology; physiology; interaction of tissue systems, in any system including adipose, behavioral, cardiovascular, immune, muscular, neural, renal, and skeletal; clinical studies bearing on sex differences in disease or response to therapy.