哺乳动物细胞上游培养的预测模型 - 综述

IF 3 Q2 ENGINEERING, CHEMICAL Digital Chemical Engineering Pub Date : 2023-12-24 DOI:10.1016/j.dche.2023.100137
Bhagya S. Yatipanthalawa , Sally L. Gras
{"title":"哺乳动物细胞上游培养的预测模型 - 综述","authors":"Bhagya S. Yatipanthalawa ,&nbsp;Sally L. Gras","doi":"10.1016/j.dche.2023.100137","DOIUrl":null,"url":null,"abstract":"<div><p>The production of therapeutic proteins in mammalian cell culture is an essential unit operation in biopharmaceutical manufacture that can benefit from the predictive insights of effective process models, leading to accelerated process development and improved process control. This review outlines and evaluates current approaches to predictive model development for mammalian cell culture and protein production. Classical mechanistic and data driven approaches are analysed, together with potential challenges in model development and application, including the experimental requirements for parameter estimation. Hybrid models, which may offer greater robustness, are then explored along with hybrid model architecture and the steps involved in model development. Successful examples from other cell fermentation processes are also considered, for application to the development, monitoring and control of mammalian processes.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"10 ","pages":"Article 100137"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772508123000558/pdfft?md5=d0b39ad5197b66dda71f79bcfd165abe&pid=1-s2.0-S2772508123000558-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predictive models for upstream mammalian cell culture development - A review\",\"authors\":\"Bhagya S. Yatipanthalawa ,&nbsp;Sally L. Gras\",\"doi\":\"10.1016/j.dche.2023.100137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The production of therapeutic proteins in mammalian cell culture is an essential unit operation in biopharmaceutical manufacture that can benefit from the predictive insights of effective process models, leading to accelerated process development and improved process control. This review outlines and evaluates current approaches to predictive model development for mammalian cell culture and protein production. Classical mechanistic and data driven approaches are analysed, together with potential challenges in model development and application, including the experimental requirements for parameter estimation. Hybrid models, which may offer greater robustness, are then explored along with hybrid model architecture and the steps involved in model development. Successful examples from other cell fermentation processes are also considered, for application to the development, monitoring and control of mammalian processes.</p></div>\",\"PeriodicalId\":72815,\"journal\":{\"name\":\"Digital Chemical Engineering\",\"volume\":\"10 \",\"pages\":\"Article 100137\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772508123000558/pdfft?md5=d0b39ad5197b66dda71f79bcfd165abe&pid=1-s2.0-S2772508123000558-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772508123000558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508123000558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在哺乳动物细胞培养过程中生产治疗用蛋白质是生物制药生产过程中必不可少的单元操作,有效的工艺模型可提供预测性见解,从而加快工艺开发和改进工艺控制。本综述概述并评估了目前针对哺乳动物细胞培养和蛋白质生产的预测模型开发方法。分析了经典的机理和数据驱动方法,以及模型开发和应用中的潜在挑战,包括参数估计的实验要求。然后探讨了可能提供更强稳健性的混合模型,以及混合模型的结构和模型开发所涉及的步骤。此外,还考虑了其他细胞发酵过程中的成功范例,以便应用于哺乳动物过程的开发、监测和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive models for upstream mammalian cell culture development - A review

The production of therapeutic proteins in mammalian cell culture is an essential unit operation in biopharmaceutical manufacture that can benefit from the predictive insights of effective process models, leading to accelerated process development and improved process control. This review outlines and evaluates current approaches to predictive model development for mammalian cell culture and protein production. Classical mechanistic and data driven approaches are analysed, together with potential challenges in model development and application, including the experimental requirements for parameter estimation. Hybrid models, which may offer greater robustness, are then explored along with hybrid model architecture and the steps involved in model development. Successful examples from other cell fermentation processes are also considered, for application to the development, monitoring and control of mammalian processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
The trust region filter strategy: Survey of a rigorous approach for optimization with surrogate models Multi-agent distributed control of integrated process networks using an adaptive community detection approach Industrial data-driven machine learning soft sensing for optimal operation of etching tools Process integration technique for targeting carbon credit price subsidy Robust simulation and technical evaluation of large-scale gas oil hydrocracking process via extended water-energy-product (E-WEP) analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1