{"title":"构建和验证免疫细胞相关端粒基因的分子亚型和特征,预测卵巢癌患者的预后和免疫疗法疗效","authors":"Lele Ling, Bingrong Li, Huijing Wu, Kaiyong Zhang, Siwen Li, Boliang Ke, Zhengyang Zhu, Te Liu, Peng Liu, Bimeng Zhang","doi":"10.1002/jgm.3606","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Ovarian cancer (OVC) has emerged as a fatal gynecological malignancy as a result of a lack of reliable methods for early detection, limited biomarkers and few treatment options. Immune cell-related telomeric genes (ICRTGs) show promise as potential biomarkers.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>ICRTGs were discovered using weighted gene co-expression network analysis (WGCNA). ICRTGs were screened for significant prognosis using one-way Cox regression analysis. Subsequently, molecular subtypes of prognosis-relevant ICRTGs were constructed and validated for OVC, and the immune microenvironment's landscape across subtypes was compared. OVC prognostic models were built and validated using prognosis-relevant ICRTGs. Additionally, chemotherapy susceptibility drugs for OVC patients in the low- and high-risk groups of ICRTGs were screened using genomics of drug susceptibility to cancer (GDSC). Finally, the immunotherapy response in the low- and high-risk groups was detected using the data from GSE78220. We conducted an immune index correlation analysis of ICRTGs with significant prognoses. The MAP3K4 gene, for which the prognostic correlation coefficient is the highest, was validated using tissue microarrays for a prognostic-immune index correlation.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>WGCNA analysis constructed a gene set of ICRTGs and screened 22 genes with prognostic significance. Unsupervised clustering analysis revealed the best molecular typing for two subtypes. The Gene Set Variation Analysis algorithm was used to calculate telomere scores and validate the molecular subtyping. A prognostic model was constructed using 17 ICRTGs. In the The Cancer Genome Atlas-OVC training set and the Gene Expression Omnibus validation set (GSE30161), the risk score model's predicted risk groups and the actual prognosis were shown to be significantly correlated. GDSC screened Axitinib, Bexarotene, Embelin and the GSE78220 datasets and demonstrated that ICRTGs effectively distinguished the group that responds to immunotherapy from the non-responsive group. Additionally, tissue microarray validation results revealed that MAP3K4 significantly predicted patient prognosis. Furthermore, MAP3K4 exhibited a positive association with PD-L1 and a negative relationship with the M1 macrophage markers CD86 and INOS.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>ICRTGs may be reliable biomarkers for the molecular typing of patients with OVC, enabling the prediction of prognosis and immunotherapy efficacy.</p>\n </section>\n </div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and validation of molecular subtype and signature of immune cell-related telomeric genes and prediction of prognosis and immunotherapy efficacy in ovarian cancer patients\",\"authors\":\"Lele Ling, Bingrong Li, Huijing Wu, Kaiyong Zhang, Siwen Li, Boliang Ke, Zhengyang Zhu, Te Liu, Peng Liu, Bimeng Zhang\",\"doi\":\"10.1002/jgm.3606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Ovarian cancer (OVC) has emerged as a fatal gynecological malignancy as a result of a lack of reliable methods for early detection, limited biomarkers and few treatment options. Immune cell-related telomeric genes (ICRTGs) show promise as potential biomarkers.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>ICRTGs were discovered using weighted gene co-expression network analysis (WGCNA). ICRTGs were screened for significant prognosis using one-way Cox regression analysis. Subsequently, molecular subtypes of prognosis-relevant ICRTGs were constructed and validated for OVC, and the immune microenvironment's landscape across subtypes was compared. OVC prognostic models were built and validated using prognosis-relevant ICRTGs. Additionally, chemotherapy susceptibility drugs for OVC patients in the low- and high-risk groups of ICRTGs were screened using genomics of drug susceptibility to cancer (GDSC). Finally, the immunotherapy response in the low- and high-risk groups was detected using the data from GSE78220. We conducted an immune index correlation analysis of ICRTGs with significant prognoses. The MAP3K4 gene, for which the prognostic correlation coefficient is the highest, was validated using tissue microarrays for a prognostic-immune index correlation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>WGCNA analysis constructed a gene set of ICRTGs and screened 22 genes with prognostic significance. Unsupervised clustering analysis revealed the best molecular typing for two subtypes. The Gene Set Variation Analysis algorithm was used to calculate telomere scores and validate the molecular subtyping. A prognostic model was constructed using 17 ICRTGs. In the The Cancer Genome Atlas-OVC training set and the Gene Expression Omnibus validation set (GSE30161), the risk score model's predicted risk groups and the actual prognosis were shown to be significantly correlated. GDSC screened Axitinib, Bexarotene, Embelin and the GSE78220 datasets and demonstrated that ICRTGs effectively distinguished the group that responds to immunotherapy from the non-responsive group. Additionally, tissue microarray validation results revealed that MAP3K4 significantly predicted patient prognosis. Furthermore, MAP3K4 exhibited a positive association with PD-L1 and a negative relationship with the M1 macrophage markers CD86 and INOS.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>ICRTGs may be reliable biomarkers for the molecular typing of patients with OVC, enabling the prediction of prognosis and immunotherapy efficacy.</p>\\n </section>\\n </div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3606\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3606","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Construction and validation of molecular subtype and signature of immune cell-related telomeric genes and prediction of prognosis and immunotherapy efficacy in ovarian cancer patients
Background
Ovarian cancer (OVC) has emerged as a fatal gynecological malignancy as a result of a lack of reliable methods for early detection, limited biomarkers and few treatment options. Immune cell-related telomeric genes (ICRTGs) show promise as potential biomarkers.
Methods
ICRTGs were discovered using weighted gene co-expression network analysis (WGCNA). ICRTGs were screened for significant prognosis using one-way Cox regression analysis. Subsequently, molecular subtypes of prognosis-relevant ICRTGs were constructed and validated for OVC, and the immune microenvironment's landscape across subtypes was compared. OVC prognostic models were built and validated using prognosis-relevant ICRTGs. Additionally, chemotherapy susceptibility drugs for OVC patients in the low- and high-risk groups of ICRTGs were screened using genomics of drug susceptibility to cancer (GDSC). Finally, the immunotherapy response in the low- and high-risk groups was detected using the data from GSE78220. We conducted an immune index correlation analysis of ICRTGs with significant prognoses. The MAP3K4 gene, for which the prognostic correlation coefficient is the highest, was validated using tissue microarrays for a prognostic-immune index correlation.
Results
WGCNA analysis constructed a gene set of ICRTGs and screened 22 genes with prognostic significance. Unsupervised clustering analysis revealed the best molecular typing for two subtypes. The Gene Set Variation Analysis algorithm was used to calculate telomere scores and validate the molecular subtyping. A prognostic model was constructed using 17 ICRTGs. In the The Cancer Genome Atlas-OVC training set and the Gene Expression Omnibus validation set (GSE30161), the risk score model's predicted risk groups and the actual prognosis were shown to be significantly correlated. GDSC screened Axitinib, Bexarotene, Embelin and the GSE78220 datasets and demonstrated that ICRTGs effectively distinguished the group that responds to immunotherapy from the non-responsive group. Additionally, tissue microarray validation results revealed that MAP3K4 significantly predicted patient prognosis. Furthermore, MAP3K4 exhibited a positive association with PD-L1 and a negative relationship with the M1 macrophage markers CD86 and INOS.
Conclusions
ICRTGs may be reliable biomarkers for the molecular typing of patients with OVC, enabling the prediction of prognosis and immunotherapy efficacy.