利用 RSM 对 SiO2/g-C3N5@NiFe2O4 纳米光催化剂去除水溶液中的倍他米松进行优化和建模

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL npj Clean Water Pub Date : 2024-01-06 DOI:10.1038/s41545-023-00295-1
Neda Bagherlou, Elnaz Ghasemi, Parvin Gharbani, Mirzaagha Babazadeh, Ali Mehrizad
{"title":"利用 RSM 对 SiO2/g-C3N5@NiFe2O4 纳米光催化剂去除水溶液中的倍他米松进行优化和建模","authors":"Neda Bagherlou, Elnaz Ghasemi, Parvin Gharbani, Mirzaagha Babazadeh, Ali Mehrizad","doi":"10.1038/s41545-023-00295-1","DOIUrl":null,"url":null,"abstract":"This study presents the preparation of SiO2/g-C3N5@NiFe2O4 nanophotocatalyst for the removal of betamethasone from aqueous solutions. The SiO2/g-C3N5@NiFe2O4 nanophotocatalyst was synthesized using the solvothermal method, and its structure and optical properties were characterized and confirmed through XRD, FESEM, EDX, DRS, BET, VSM and PL analysis. Photocatalytic removal of betamethasone was optimized using a central composite design. The band gap of pure g-C3N5, NiFe2O4, and SiO2/g-C3N5@NiFe2O4 was obtained 2.4 eV, 2.7 eV, and 1.4 eV, respectively using the Tauc plot. The F-value of 909.88 and Lack of Fit F-value of 0.41 confirm the obtained model is significant. Also, the value of R2 = 0.9988 along with R2adja = 09977 demonstrates excellent model performance. Maximum removal efficiency of betamethasone was approximately 87.15% under the following optimal conditions: nanophotocatalyst dosage of 0.005 g/50 mL, a betamethasone concentration of 20 mg/L, and an irradiation time of 40 min under visible light. This performance closely aligns with the actual value of 80.65%. In conclusion, the SiO2/g-C3N5@NiFe2O4 nanophotocatalyst demonstrates excellent photocatalytic ability for the removal of betamethasone from aqueous solutions.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-023-00295-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimization and modeling of betamethasone removal from aqueous solutions using a SiO2/g-C3N5@NiFe2O4 nanophotocatalyst by RSM\",\"authors\":\"Neda Bagherlou, Elnaz Ghasemi, Parvin Gharbani, Mirzaagha Babazadeh, Ali Mehrizad\",\"doi\":\"10.1038/s41545-023-00295-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the preparation of SiO2/g-C3N5@NiFe2O4 nanophotocatalyst for the removal of betamethasone from aqueous solutions. The SiO2/g-C3N5@NiFe2O4 nanophotocatalyst was synthesized using the solvothermal method, and its structure and optical properties were characterized and confirmed through XRD, FESEM, EDX, DRS, BET, VSM and PL analysis. Photocatalytic removal of betamethasone was optimized using a central composite design. The band gap of pure g-C3N5, NiFe2O4, and SiO2/g-C3N5@NiFe2O4 was obtained 2.4 eV, 2.7 eV, and 1.4 eV, respectively using the Tauc plot. The F-value of 909.88 and Lack of Fit F-value of 0.41 confirm the obtained model is significant. Also, the value of R2 = 0.9988 along with R2adja = 09977 demonstrates excellent model performance. Maximum removal efficiency of betamethasone was approximately 87.15% under the following optimal conditions: nanophotocatalyst dosage of 0.005 g/50 mL, a betamethasone concentration of 20 mg/L, and an irradiation time of 40 min under visible light. This performance closely aligns with the actual value of 80.65%. In conclusion, the SiO2/g-C3N5@NiFe2O4 nanophotocatalyst demonstrates excellent photocatalytic ability for the removal of betamethasone from aqueous solutions.\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41545-023-00295-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41545-023-00295-1\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-023-00295-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了用于从水溶液中去除倍他米松的 SiO2/g-C3N5@NiFe2O4 纳米光催化剂的制备方法。采用溶热法合成了 SiO2/g-C3N5@NiFe2O4 纳米光催化剂,并通过 XRD、FESEM、EDX、DRS、BET、VSM 和 PL 分析对其结构和光学性质进行了表征和确认。采用中心复合设计对光催化去除倍他米松进行了优化。利用陶克曲线图,纯 g-C3N5、NiFe2O4 和 SiO2/g-C3N5@NiFe2O4 的带隙分别为 2.4 eV、2.7 eV 和 1.4 eV。F 值为 909.88,Lack of Fit F 值为 0.41,证明所得到的模型是显著的。此外,R2 = 0.9988 和 R2adja = 09977 的值也证明了模型的卓越性能。在以下最佳条件下,倍他米松的最大去除率约为 87.15%:纳米光催化剂用量为 0.005 克/50 毫升,倍他米松浓度为 20 毫克/升,可见光照射时间为 40 分钟。这一性能与实际值 80.65% 非常接近。总之,SiO2/g-C3N5@NiFe2O4 纳米光催化剂在去除水溶液中的倍他米松方面表现出卓越的光催化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization and modeling of betamethasone removal from aqueous solutions using a SiO2/g-C3N5@NiFe2O4 nanophotocatalyst by RSM
This study presents the preparation of SiO2/g-C3N5@NiFe2O4 nanophotocatalyst for the removal of betamethasone from aqueous solutions. The SiO2/g-C3N5@NiFe2O4 nanophotocatalyst was synthesized using the solvothermal method, and its structure and optical properties were characterized and confirmed through XRD, FESEM, EDX, DRS, BET, VSM and PL analysis. Photocatalytic removal of betamethasone was optimized using a central composite design. The band gap of pure g-C3N5, NiFe2O4, and SiO2/g-C3N5@NiFe2O4 was obtained 2.4 eV, 2.7 eV, and 1.4 eV, respectively using the Tauc plot. The F-value of 909.88 and Lack of Fit F-value of 0.41 confirm the obtained model is significant. Also, the value of R2 = 0.9988 along with R2adja = 09977 demonstrates excellent model performance. Maximum removal efficiency of betamethasone was approximately 87.15% under the following optimal conditions: nanophotocatalyst dosage of 0.005 g/50 mL, a betamethasone concentration of 20 mg/L, and an irradiation time of 40 min under visible light. This performance closely aligns with the actual value of 80.65%. In conclusion, the SiO2/g-C3N5@NiFe2O4 nanophotocatalyst demonstrates excellent photocatalytic ability for the removal of betamethasone from aqueous solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
期刊最新文献
A multi-country survey on sanitation systems in underserved urban settlements in the Melanesian Pacific region Multidrug-resistant high-risk clonal Escherichia coli lineages occur along an antibiotic residue gradient in the Baltic Sea Joule and photothermal heating techniques for oil desorption with techno-economic feasibility and environmental impact analysis Efficient generation of 1O2 by activating peroxymonosulfate on graphitic carbon nanoribbons for water remediation 3D printed Ti3C2@Polymer based artificial forest for autonomous water harvesting system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1