利用六方氮化硼中的自旋量子位组进行高频磁测量

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2024-01-06 DOI:10.1038/s41534-023-00796-4
Charlie J. Patrickson, Simon Baber, Blanka B. Gaál, Andrew J. Ramsay, Isaac J. Luxmoore
{"title":"利用六方氮化硼中的自旋量子位组进行高频磁测量","authors":"Charlie J. Patrickson, Simon Baber, Blanka B. Gaál, Andrew J. Ramsay, Isaac J. Luxmoore","doi":"10.1038/s41534-023-00796-4","DOIUrl":null,"url":null,"abstract":"<p>Sensors based on spin qubits in 2D crystals offer the prospect of nanoscale proximities between sensor and source, which could provide access to otherwise inaccessible signals. For AC magnetometry, the sensitivity and frequency range are typically limited by the noise spectrum, which determines the qubit coherence time. We address this using phase modulated continuous concatenated dynamic decoupling, which extends the coherence time towards the <i>T</i><sub>1</sub> limit at room temperature and enables tuneable narrowband AC magnetometry. Using an ensemble of negatively charged boron vacancies in hexagonal boron nitride, we detect out-of-plane AC fields in the range of ~ 10 − 150 MHz, and in-plane fields within ± 150 MHz of the electron spin resonance. We measure an AC magnetic field sensitivity of <span>\\(\\sim 1\\,\\mu {{{\\rm{T}}}}/\\sqrt{{{{\\rm{Hz}}}}}\\)</span> at ~ 2.5 GHz, for a sensor volume of ~ 0.1 μm<sup>3</sup>. This work establishes the viability of spin defects in 2D materials for high frequency magnetometry, with wide-ranging applications across science and technology.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"209 1 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High frequency magnetometry with an ensemble of spin qubits in hexagonal boron nitride\",\"authors\":\"Charlie J. Patrickson, Simon Baber, Blanka B. Gaál, Andrew J. Ramsay, Isaac J. Luxmoore\",\"doi\":\"10.1038/s41534-023-00796-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sensors based on spin qubits in 2D crystals offer the prospect of nanoscale proximities between sensor and source, which could provide access to otherwise inaccessible signals. For AC magnetometry, the sensitivity and frequency range are typically limited by the noise spectrum, which determines the qubit coherence time. We address this using phase modulated continuous concatenated dynamic decoupling, which extends the coherence time towards the <i>T</i><sub>1</sub> limit at room temperature and enables tuneable narrowband AC magnetometry. Using an ensemble of negatively charged boron vacancies in hexagonal boron nitride, we detect out-of-plane AC fields in the range of ~ 10 − 150 MHz, and in-plane fields within ± 150 MHz of the electron spin resonance. We measure an AC magnetic field sensitivity of <span>\\\\(\\\\sim 1\\\\,\\\\mu {{{\\\\rm{T}}}}/\\\\sqrt{{{{\\\\rm{Hz}}}}}\\\\)</span> at ~ 2.5 GHz, for a sensor volume of ~ 0.1 μm<sup>3</sup>. This work establishes the viability of spin defects in 2D materials for high frequency magnetometry, with wide-ranging applications across science and technology.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"209 1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-023-00796-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-023-00796-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

基于二维晶体中自旋量子比特的传感器为传感器和信号源之间实现纳米级的接近提供了前景,从而可以获取原本无法获取的信号。对于交流磁力测量,灵敏度和频率范围通常受到噪声频谱的限制,而噪声频谱决定了量子比特的相干时间。我们利用相位调制连续串联动态去耦解决了这一问题,从而将相干时间延长至室温下的 T1 极限,并实现了可调节的窄带交流磁力测量。利用六方氮化硼中的负电荷硼空位集合,我们探测到了 ~ 10 - 150 MHz 范围内的面外交流磁场,以及电子自旋共振 ± 150 MHz 范围内的面内磁场。在传感器体积约为 0.1 μm3 的情况下,我们在约 2.5 GHz 的频率下测量到交流磁场灵敏度为 (\sim 1\,\mu {{\{rm{T}}}}/\sqrt{{{{\rm{Hz}}}}}\ )。这项工作证明了二维材料中的自旋缺陷在高频磁测量中的可行性,在科学和技术领域有着广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High frequency magnetometry with an ensemble of spin qubits in hexagonal boron nitride

Sensors based on spin qubits in 2D crystals offer the prospect of nanoscale proximities between sensor and source, which could provide access to otherwise inaccessible signals. For AC magnetometry, the sensitivity and frequency range are typically limited by the noise spectrum, which determines the qubit coherence time. We address this using phase modulated continuous concatenated dynamic decoupling, which extends the coherence time towards the T1 limit at room temperature and enables tuneable narrowband AC magnetometry. Using an ensemble of negatively charged boron vacancies in hexagonal boron nitride, we detect out-of-plane AC fields in the range of ~ 10 − 150 MHz, and in-plane fields within ± 150 MHz of the electron spin resonance. We measure an AC magnetic field sensitivity of \(\sim 1\,\mu {{{\rm{T}}}}/\sqrt{{{{\rm{Hz}}}}}\) at ~ 2.5 GHz, for a sensor volume of ~ 0.1 μm3. This work establishes the viability of spin defects in 2D materials for high frequency magnetometry, with wide-ranging applications across science and technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Can quantum computers do nothing? Characterizing coherent errors using matrix-element amplification Many-body entanglement via ‘which-path’ information Hardware-tailored diagonalization circuits Optical and spin coherence of Er spin qubits in epitaxial cerium dioxide on silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1