Xiaoqun Tang, Shengji Lv, Zhaobiao Mou, Xia Liu, Zijing Li
{"title":"Cu(II)-Mediated direct 18F-dehydrofluorination of phosphine oxides in high molar activity.","authors":"Xiaoqun Tang, Shengji Lv, Zhaobiao Mou, Xia Liu, Zijing Li","doi":"10.1186/s41181-023-00234-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The <sup>18</sup>F/<sup>19</sup>F-isotope exchange method employing P(V)-centered prosthetic groups demonstrates advantages in addressing mild one-step aqueous <sup>18</sup>F-labeling of peptides and proteins. However, the molar activity (A<sub>m</sub>) achieved through isotope exchange remains relatively low, unless employing a high initial activity of [<sup>18</sup>F]F<sup>−</sup>. To overcome this drawback, our work introduces a novel approach through a Cu-mediated direct <sup>18</sup>F-dehydrofluorination of phosphine oxides. This method leverages the straightforward separation of the <sup>18</sup>F-labeled product from the phosphine oxide precursors, aiming to primarily increase A<sub>m</sub>.</p><h3>Results</h3><p>Through a <sup>19</sup>F-dehydrofluorination efficiency test, Cu(OAc)<sub>2</sub> was identified as the optimal oxidative metal salt, exhibiting a remarkable 100% conversion within one hour. Leveraging the straightforward separation of phosphine oxide precursors and phosphinic fluoride products, the A<sub>m</sub> of an activated ester, [<sup>18</sup>F]<b>4</b>, sees an impressive nearly 15-fold increase compared to the <sup>18</sup>F/<sup>19</sup>F-isotope exchange, with the same initial activity of [<sup>18</sup>F]F<sup>−</sup>. Furthermore, this Cu(II)-mediated <sup>18</sup>F-dehydrofluorination approach demonstrates tolerance up to 20% solvent water content, which enables the practical radiosynthesis of <sup>18</sup>F-labeled water-soluble molecules under non-drying conditions.</p><h3>Conclusions</h3><p>The direct <sup>18</sup>F-dehydrofluorination of phosphine oxide prosthetic groups has been successfully accomplished, achieving a high A<sub>m</sub> via Cu(II)-mediated oxidative addition and reductive elimination.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"9 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-023-00234-y","citationCount":"0","resultStr":"{\"title\":\"Cu(II)-Mediated direct 18F-dehydrofluorination of phosphine oxides in high molar activity\",\"authors\":\"Xiaoqun Tang, Shengji Lv, Zhaobiao Mou, Xia Liu, Zijing Li\",\"doi\":\"10.1186/s41181-023-00234-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The <sup>18</sup>F/<sup>19</sup>F-isotope exchange method employing P(V)-centered prosthetic groups demonstrates advantages in addressing mild one-step aqueous <sup>18</sup>F-labeling of peptides and proteins. However, the molar activity (A<sub>m</sub>) achieved through isotope exchange remains relatively low, unless employing a high initial activity of [<sup>18</sup>F]F<sup>−</sup>. To overcome this drawback, our work introduces a novel approach through a Cu-mediated direct <sup>18</sup>F-dehydrofluorination of phosphine oxides. This method leverages the straightforward separation of the <sup>18</sup>F-labeled product from the phosphine oxide precursors, aiming to primarily increase A<sub>m</sub>.</p><h3>Results</h3><p>Through a <sup>19</sup>F-dehydrofluorination efficiency test, Cu(OAc)<sub>2</sub> was identified as the optimal oxidative metal salt, exhibiting a remarkable 100% conversion within one hour. Leveraging the straightforward separation of phosphine oxide precursors and phosphinic fluoride products, the A<sub>m</sub> of an activated ester, [<sup>18</sup>F]<b>4</b>, sees an impressive nearly 15-fold increase compared to the <sup>18</sup>F/<sup>19</sup>F-isotope exchange, with the same initial activity of [<sup>18</sup>F]F<sup>−</sup>. Furthermore, this Cu(II)-mediated <sup>18</sup>F-dehydrofluorination approach demonstrates tolerance up to 20% solvent water content, which enables the practical radiosynthesis of <sup>18</sup>F-labeled water-soluble molecules under non-drying conditions.</p><h3>Conclusions</h3><p>The direct <sup>18</sup>F-dehydrofluorination of phosphine oxide prosthetic groups has been successfully accomplished, achieving a high A<sub>m</sub> via Cu(II)-mediated oxidative addition and reductive elimination.</p></div>\",\"PeriodicalId\":534,\"journal\":{\"name\":\"EJNMMI Radiopharmacy and Chemistry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-023-00234-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Radiopharmacy and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41181-023-00234-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-023-00234-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Cu(II)-Mediated direct 18F-dehydrofluorination of phosphine oxides in high molar activity
Background
The 18F/19F-isotope exchange method employing P(V)-centered prosthetic groups demonstrates advantages in addressing mild one-step aqueous 18F-labeling of peptides and proteins. However, the molar activity (Am) achieved through isotope exchange remains relatively low, unless employing a high initial activity of [18F]F−. To overcome this drawback, our work introduces a novel approach through a Cu-mediated direct 18F-dehydrofluorination of phosphine oxides. This method leverages the straightforward separation of the 18F-labeled product from the phosphine oxide precursors, aiming to primarily increase Am.
Results
Through a 19F-dehydrofluorination efficiency test, Cu(OAc)2 was identified as the optimal oxidative metal salt, exhibiting a remarkable 100% conversion within one hour. Leveraging the straightforward separation of phosphine oxide precursors and phosphinic fluoride products, the Am of an activated ester, [18F]4, sees an impressive nearly 15-fold increase compared to the 18F/19F-isotope exchange, with the same initial activity of [18F]F−. Furthermore, this Cu(II)-mediated 18F-dehydrofluorination approach demonstrates tolerance up to 20% solvent water content, which enables the practical radiosynthesis of 18F-labeled water-soluble molecules under non-drying conditions.
Conclusions
The direct 18F-dehydrofluorination of phosphine oxide prosthetic groups has been successfully accomplished, achieving a high Am via Cu(II)-mediated oxidative addition and reductive elimination.