{"title":"基于 CNN-WNN-WLSTM 的锂离子电池健康状况评估","authors":"Quanzheng Yao, Xianhua Song, Wei Xie","doi":"10.1007/s40747-023-01300-3","DOIUrl":null,"url":null,"abstract":"<p>Accurate and stable estimation of the state of health (SOH), which is one of the critical indicators to characterize the ability of lithium-ion (Li-ion) batteries to store and release energy, is critical in the stable driving of electric vehicles. In this paper, a novel SOH estimation method based on the aging factors of battery, which combines convolutional neural network (CNN), wavelet neural network (WNN), and wavelet long short-term memory (WLSTM) named CNN–WNN–WLSTM, is designed. The proposed CNN–WNN–WLSTM estimation scheme inherits both the fast convergence and robust stability of the WNN, as well as the ability of long short-term memory neural network (LSTM) to extract the time series features of the data; moreover, using CNN can make the proposed algorithm extract the data features from the original battery data automatically, and the WNN–WLSTM is then adopted to produce the final SOH estimation by exploiting the features from the CNN. To further speed and achieve global optimization, the RMSprop optimizer, instead of the usually used Adagrad optimizer, is chosen as the solver of the CNN–WNN–WLSTM network. Experimental results on data set from the NASA Ames Prognostics Center of Excellence show that the proposed algorithm can be commendably used for Li-ion battery health management by quantitative comparison with other commonly used machine learning methods, such as back-propagation neural network, WNN, LSTM, WLSTM, convolutional neural network–long short-term memory neural network (CNN–LSTM), and Gaussian process regression.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"10 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State of health estimation of lithium-ion battery based on CNN–WNN–WLSTM\",\"authors\":\"Quanzheng Yao, Xianhua Song, Wei Xie\",\"doi\":\"10.1007/s40747-023-01300-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate and stable estimation of the state of health (SOH), which is one of the critical indicators to characterize the ability of lithium-ion (Li-ion) batteries to store and release energy, is critical in the stable driving of electric vehicles. In this paper, a novel SOH estimation method based on the aging factors of battery, which combines convolutional neural network (CNN), wavelet neural network (WNN), and wavelet long short-term memory (WLSTM) named CNN–WNN–WLSTM, is designed. The proposed CNN–WNN–WLSTM estimation scheme inherits both the fast convergence and robust stability of the WNN, as well as the ability of long short-term memory neural network (LSTM) to extract the time series features of the data; moreover, using CNN can make the proposed algorithm extract the data features from the original battery data automatically, and the WNN–WLSTM is then adopted to produce the final SOH estimation by exploiting the features from the CNN. To further speed and achieve global optimization, the RMSprop optimizer, instead of the usually used Adagrad optimizer, is chosen as the solver of the CNN–WNN–WLSTM network. Experimental results on data set from the NASA Ames Prognostics Center of Excellence show that the proposed algorithm can be commendably used for Li-ion battery health management by quantitative comparison with other commonly used machine learning methods, such as back-propagation neural network, WNN, LSTM, WLSTM, convolutional neural network–long short-term memory neural network (CNN–LSTM), and Gaussian process regression.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-023-01300-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-023-01300-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
State of health estimation of lithium-ion battery based on CNN–WNN–WLSTM
Accurate and stable estimation of the state of health (SOH), which is one of the critical indicators to characterize the ability of lithium-ion (Li-ion) batteries to store and release energy, is critical in the stable driving of electric vehicles. In this paper, a novel SOH estimation method based on the aging factors of battery, which combines convolutional neural network (CNN), wavelet neural network (WNN), and wavelet long short-term memory (WLSTM) named CNN–WNN–WLSTM, is designed. The proposed CNN–WNN–WLSTM estimation scheme inherits both the fast convergence and robust stability of the WNN, as well as the ability of long short-term memory neural network (LSTM) to extract the time series features of the data; moreover, using CNN can make the proposed algorithm extract the data features from the original battery data automatically, and the WNN–WLSTM is then adopted to produce the final SOH estimation by exploiting the features from the CNN. To further speed and achieve global optimization, the RMSprop optimizer, instead of the usually used Adagrad optimizer, is chosen as the solver of the CNN–WNN–WLSTM network. Experimental results on data set from the NASA Ames Prognostics Center of Excellence show that the proposed algorithm can be commendably used for Li-ion battery health management by quantitative comparison with other commonly used machine learning methods, such as back-propagation neural network, WNN, LSTM, WLSTM, convolutional neural network–long short-term memory neural network (CNN–LSTM), and Gaussian process regression.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.