利用极少量标记样本进行半监督聚类的内聚性对维约束深度嵌入技术*

Zhang Jing, Guiyan Wei, Yonggong Ren
{"title":"利用极少量标记样本进行半监督聚类的内聚性对维约束深度嵌入技术*","authors":"Zhang Jing, Guiyan Wei, Yonggong Ren","doi":"10.34028/iajit/21/1/7","DOIUrl":null,"url":null,"abstract":"Semi-supervised learning is a powerful paradigm for excavating latent structures of between labeled and unlabeled samples under the view of models constructing. Currently, graph-based models solve the approximate matrix that directly represent distributions of samples by the spatial metric. The crux lies in optimizing connections of samples, which is achieved by subjecting to must-links or cannot-links. Unfortunately, to find links are rather difficult for semi-supervised clustering with very few labeled samples, therefore, significantly impairs the robustness and accuracy in such scenario. To address this problem, we propose the Cohesive Pair-wises Constrained deep Embedding model (CPCE) to obtain an optimal embedding for representing the category distribution of samples and avoid the failed graph-structure of the global samples. CPCE designs the deep network framework based on CNN-Autoencoder by minimizing reconstruct errors of samples, and build up constrains both of the sample distribution for within-class and the category distribution for intra-class to optimal the latent embedding. Then, leverage the strong supervised information obtained from cohesive pair-wises to pull samples into within-class, which avoid the similarity of high-dimension features located in different categories to achieve more the compact solution. We demonstrate the proposed method in popular datasets and compare the superiority with popular methods","PeriodicalId":161392,"journal":{"name":"The International Arab Journal of Information Technology","volume":"85 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohesive Pair-Wises Constrained Deep Embedding for Semi-Supervised Clustering with Very Few Labeled Samples*\",\"authors\":\"Zhang Jing, Guiyan Wei, Yonggong Ren\",\"doi\":\"10.34028/iajit/21/1/7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-supervised learning is a powerful paradigm for excavating latent structures of between labeled and unlabeled samples under the view of models constructing. Currently, graph-based models solve the approximate matrix that directly represent distributions of samples by the spatial metric. The crux lies in optimizing connections of samples, which is achieved by subjecting to must-links or cannot-links. Unfortunately, to find links are rather difficult for semi-supervised clustering with very few labeled samples, therefore, significantly impairs the robustness and accuracy in such scenario. To address this problem, we propose the Cohesive Pair-wises Constrained deep Embedding model (CPCE) to obtain an optimal embedding for representing the category distribution of samples and avoid the failed graph-structure of the global samples. CPCE designs the deep network framework based on CNN-Autoencoder by minimizing reconstruct errors of samples, and build up constrains both of the sample distribution for within-class and the category distribution for intra-class to optimal the latent embedding. Then, leverage the strong supervised information obtained from cohesive pair-wises to pull samples into within-class, which avoid the similarity of high-dimension features located in different categories to achieve more the compact solution. We demonstrate the proposed method in popular datasets and compare the superiority with popular methods\",\"PeriodicalId\":161392,\"journal\":{\"name\":\"The International Arab Journal of Information Technology\",\"volume\":\"85 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Arab Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34028/iajit/21/1/7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Arab Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/21/1/7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

半监督学习(Semi-supervised learning)是在模型构建视角下挖掘已标注和未标注样本之间潜在结构的一种强大范式。目前,基于图的模型解决了用空间度量直接表示样本分布的近似矩阵问题。其关键在于优化样本的连接,通过必须连接或不能连接来实现。遗憾的是,对于只有极少数标注样本的半监督聚类来说,要找到链接是相当困难的,因此在这种情况下会严重影响鲁棒性和准确性。为了解决这个问题,我们提出了内聚对智约束深度嵌入模型(Cohesive Pair-wises Constrained deep Embedding model,CPCE),以获得代表样本类别分布的最优嵌入,避免全局样本的图结构失效。CPCE 通过最小化样本重构误差来设计基于 CNN-Autoencoder 的深度网络框架,并同时对类内样本分布和类内类别分布建立约束,以优化潜在嵌入。然后,利用从内聚配对中获得的强监督信息,将样本拉入类内,从而避免了位于不同类别中的高维特征的相似性,实现了更紧凑的解决方案。我们在流行的数据集中演示了所提出的方法,并与流行的方法比较了其优越性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cohesive Pair-Wises Constrained Deep Embedding for Semi-Supervised Clustering with Very Few Labeled Samples*
Semi-supervised learning is a powerful paradigm for excavating latent structures of between labeled and unlabeled samples under the view of models constructing. Currently, graph-based models solve the approximate matrix that directly represent distributions of samples by the spatial metric. The crux lies in optimizing connections of samples, which is achieved by subjecting to must-links or cannot-links. Unfortunately, to find links are rather difficult for semi-supervised clustering with very few labeled samples, therefore, significantly impairs the robustness and accuracy in such scenario. To address this problem, we propose the Cohesive Pair-wises Constrained deep Embedding model (CPCE) to obtain an optimal embedding for representing the category distribution of samples and avoid the failed graph-structure of the global samples. CPCE designs the deep network framework based on CNN-Autoencoder by minimizing reconstruct errors of samples, and build up constrains both of the sample distribution for within-class and the category distribution for intra-class to optimal the latent embedding. Then, leverage the strong supervised information obtained from cohesive pair-wises to pull samples into within-class, which avoid the similarity of high-dimension features located in different categories to achieve more the compact solution. We demonstrate the proposed method in popular datasets and compare the superiority with popular methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cohesive Pair-Wises Constrained Deep Embedding for Semi-Supervised Clustering with Very Few Labeled Samples* Scrupulous SCGAN Framework for Recognition of Restored Images with Caffe based PCA Filtration Fuzzy Heuristics for Detecting and Preventing Black Hole Attack XAI-PDF: A Robust Framework for Malicious PDF Detection Leveraging SHAP-Based Feature Engineering Healthcare Data Security in Cloud Storage Using Light Weight Symmetric Key Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1