利用 SIMONe 系统调查秘鲁中部和北部上空的中间层和低温层动态

J. F. Conte, Jorge L. Chau, Erdal Yiğit, J. Suclupe, Rodolfo Rodríguez
{"title":"利用 SIMONe 系统调查秘鲁中部和北部上空的中间层和低温层动态","authors":"J. F. Conte, Jorge L. Chau, Erdal Yiğit, J. Suclupe, Rodolfo Rodríguez","doi":"10.1175/jas-d-23-0030.1","DOIUrl":null,"url":null,"abstract":"One year of Spread spectrum Interferometric Multistatic meteor radar Observing Network (SIMONe) measurements are analyzed and compared for the first time between two low-latitude locations in Peru: Jicamarca (12°S, 77°W) and Piura (5°S, 80°W). Investigation of the mean horizontal winds and tides reveals that mesosphere and lower thermosphere (MLT) planetary-scale dynamics are similar between these two locations, although differences can be seen in some tidal components, e.g., the diurnal tide. On the other hand, 28-day median values of the momentum fluxes obtained with 4-h, 4-km time–altitude bins indicate that the mesoscale dynamics differ significantly between Jicamarca and Piura, places separated by approximately 850 km. From the middle of July until October 2021, a strong acceleration of the background zonal wind by westward-propagating gravity waves (GWs) is observed above ∼90 km at both locations, although with larger amplitudes over Jicamarca. From the middle of January until April 2022, a second strong acceleration of the background zonal wind, again by westward-propagating GWs, is observed, but this time with larger amplitudes over Piura. The latter is further supported by the dominance of negative vertical gradients of the zonal momentum flux above 89 km of altitude. Thus, these results observationally confirm the previous studies based on general circulation model simulations indicating that the directions of the zonal GW drag and the zonal background wind coincide in the low-latitude MLT. The weak correlations between the horizontal wind gradients over Jicamarca and Piura reinforce the fact that the mesoscale dynamics are different at these two locations.","PeriodicalId":508177,"journal":{"name":"Journal of the Atmospheric Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Mesosphere and Lower Thermosphere Dynamics over Central and Northern Peru Using SIMONe Systems\",\"authors\":\"J. F. Conte, Jorge L. Chau, Erdal Yiğit, J. Suclupe, Rodolfo Rodríguez\",\"doi\":\"10.1175/jas-d-23-0030.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One year of Spread spectrum Interferometric Multistatic meteor radar Observing Network (SIMONe) measurements are analyzed and compared for the first time between two low-latitude locations in Peru: Jicamarca (12°S, 77°W) and Piura (5°S, 80°W). Investigation of the mean horizontal winds and tides reveals that mesosphere and lower thermosphere (MLT) planetary-scale dynamics are similar between these two locations, although differences can be seen in some tidal components, e.g., the diurnal tide. On the other hand, 28-day median values of the momentum fluxes obtained with 4-h, 4-km time–altitude bins indicate that the mesoscale dynamics differ significantly between Jicamarca and Piura, places separated by approximately 850 km. From the middle of July until October 2021, a strong acceleration of the background zonal wind by westward-propagating gravity waves (GWs) is observed above ∼90 km at both locations, although with larger amplitudes over Jicamarca. From the middle of January until April 2022, a second strong acceleration of the background zonal wind, again by westward-propagating GWs, is observed, but this time with larger amplitudes over Piura. The latter is further supported by the dominance of negative vertical gradients of the zonal momentum flux above 89 km of altitude. Thus, these results observationally confirm the previous studies based on general circulation model simulations indicating that the directions of the zonal GW drag and the zonal background wind coincide in the low-latitude MLT. The weak correlations between the horizontal wind gradients over Jicamarca and Piura reinforce the fact that the mesoscale dynamics are different at these two locations.\",\"PeriodicalId\":508177,\"journal\":{\"name\":\"Journal of the Atmospheric Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Atmospheric Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/jas-d-23-0030.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Atmospheric Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jas-d-23-0030.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首次对秘鲁两个低纬度地区一年来的扩频干涉多静态流星雷达观测网络(SIMONe)测量数据进行了分析和比较:对秘鲁的两个低纬度地点:Jicamarca(南纬 12°,西经 77°)和 Piura(南纬 5°,西经 80°)进行了分析和比较。对平均水平风和潮汐的研究表明,这两个地点的中间层和低温层(MLT)行星尺度动态相似,但在某些潮汐成分(如昼潮)上可以看到差异。另一方面,用 4 小时、4 公里的时间高度分段获得的 28 天动量通量中值表明,中尺度动力学在相距约 850 公里的 Jicamarca 和 Piura 之间存在显著差异。从 2021 年 7 月中旬到 10 月,两地都观测到向西传播的重力波(GWs)对 90 千米以上的背景地带风产生了强烈的加速作用,但在 Jicamarca 的振幅更大。从 1 月中旬到 2022 年 4 月,在皮乌拉上空观测到了背景带风的第二次强加速,也是由向西传播的重力波引起的,但这次的振幅更大。海拔 89 千米以上地带动量通量的负垂直梯度占主导地位,这进一步证实了后者。因此,这些观测结果证实了之前基于大气环流模式模拟的研究结果,即在低纬度多变层流区,地带性全球大气阻力和地带性背景风的方向是一致的。在 Jicamarca 和 Piura 上空的水平风梯度之间存在微弱的相关性,这进一步证实了这两个地点的中尺度动态是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Mesosphere and Lower Thermosphere Dynamics over Central and Northern Peru Using SIMONe Systems
One year of Spread spectrum Interferometric Multistatic meteor radar Observing Network (SIMONe) measurements are analyzed and compared for the first time between two low-latitude locations in Peru: Jicamarca (12°S, 77°W) and Piura (5°S, 80°W). Investigation of the mean horizontal winds and tides reveals that mesosphere and lower thermosphere (MLT) planetary-scale dynamics are similar between these two locations, although differences can be seen in some tidal components, e.g., the diurnal tide. On the other hand, 28-day median values of the momentum fluxes obtained with 4-h, 4-km time–altitude bins indicate that the mesoscale dynamics differ significantly between Jicamarca and Piura, places separated by approximately 850 km. From the middle of July until October 2021, a strong acceleration of the background zonal wind by westward-propagating gravity waves (GWs) is observed above ∼90 km at both locations, although with larger amplitudes over Jicamarca. From the middle of January until April 2022, a second strong acceleration of the background zonal wind, again by westward-propagating GWs, is observed, but this time with larger amplitudes over Piura. The latter is further supported by the dominance of negative vertical gradients of the zonal momentum flux above 89 km of altitude. Thus, these results observationally confirm the previous studies based on general circulation model simulations indicating that the directions of the zonal GW drag and the zonal background wind coincide in the low-latitude MLT. The weak correlations between the horizontal wind gradients over Jicamarca and Piura reinforce the fact that the mesoscale dynamics are different at these two locations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameterization of Vertical Turbulent Transport in the Inner Core of Tropical Cyclones and Its Impact on Storm Intensification. Part I: Sensitivity to Turbulent Mixing Length Should we conserve entropy or energy when computing CAPE with mixed-phase precipitation physics? Transient Tropopause Waves On the size-dependence in the recent time-dependent theory of tropical cyclone intensification Processes Controlling the Entrainment and Liquid Water Response to Aerosol Perturbations in Non-Precipitating Stratocumulus Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1