图像加密中的乘法群耦合与混沌理论

F. ElAzzaby, N. Elakkad, Khalid Sabour
{"title":"图像加密中的乘法群耦合与混沌理论","authors":"F. ElAzzaby, N. Elakkad, Khalid Sabour","doi":"10.34028/iajit/21/1/1","DOIUrl":null,"url":null,"abstract":"This study is centered on a significant scientific contribution within the realm of image cryptography. The chosen approach involves employing the bidimensional Arnold Cat Map transformation to reposition and modify pixel locations, guided by parameters derived from the original image. The construction of the multiplicative group Z/nZ, comprising equivalence classes modulo n, relies on a hyper-chaotic sequence derived from the 2D sinusoidal logistic modulation map. The correlation between this sequence and the preceding step yields an unpredictable blurring pattern, effectively altering the statistical properties of resulting matrices and distributing the influence of individual bits across the entire encrypted image. For each pixel, the encryption process entails an XOR operation with the Z/nZ group, followed by a right shift based on the three Least Significant Bits (LSB) of the preceding pixel. This meticulous procedure is iterated for every pixel, leaving no trace of similarity or association with the original plaintext image, effectively rendering it blurred and indecipherable. To gauge the efficacy of our algorithm, we subjected it to thorough evaluation utilizing diverse criteria, including histogram analysis, which unveiled a nearly uniform pattern in the encrypted images. Entropy values were found to be close to 8, while the correlation analysis exhibited a pronounced proximity to 0. Moreover, we subjected our approach to differential attacks, and the calculated values of the Number of Changing Pixel Rate (NPCR > 99.6) and the Unified Averaged Changed Intensity (UACI > 33.2) corroborated the strength and resilience of our methodology. In addition, to establish its comparative standing, we undertook a comprehensive assessment, meticulously comparing our method to various existing approaches from the literature, including those proposed by Hua, Es-sabry, and Faragallah. This systematic process accentuated the high level of responsiveness and sensitivity inherent in our approach, thus underscoring its innovative and promising nature","PeriodicalId":161392,"journal":{"name":"The International Arab Journal of Information Technology","volume":"44 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Coupling of a Multiplicative Group and the Theory of Chaos in the Encryptions of Images\",\"authors\":\"F. ElAzzaby, N. Elakkad, Khalid Sabour\",\"doi\":\"10.34028/iajit/21/1/1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is centered on a significant scientific contribution within the realm of image cryptography. The chosen approach involves employing the bidimensional Arnold Cat Map transformation to reposition and modify pixel locations, guided by parameters derived from the original image. The construction of the multiplicative group Z/nZ, comprising equivalence classes modulo n, relies on a hyper-chaotic sequence derived from the 2D sinusoidal logistic modulation map. The correlation between this sequence and the preceding step yields an unpredictable blurring pattern, effectively altering the statistical properties of resulting matrices and distributing the influence of individual bits across the entire encrypted image. For each pixel, the encryption process entails an XOR operation with the Z/nZ group, followed by a right shift based on the three Least Significant Bits (LSB) of the preceding pixel. This meticulous procedure is iterated for every pixel, leaving no trace of similarity or association with the original plaintext image, effectively rendering it blurred and indecipherable. To gauge the efficacy of our algorithm, we subjected it to thorough evaluation utilizing diverse criteria, including histogram analysis, which unveiled a nearly uniform pattern in the encrypted images. Entropy values were found to be close to 8, while the correlation analysis exhibited a pronounced proximity to 0. Moreover, we subjected our approach to differential attacks, and the calculated values of the Number of Changing Pixel Rate (NPCR > 99.6) and the Unified Averaged Changed Intensity (UACI > 33.2) corroborated the strength and resilience of our methodology. In addition, to establish its comparative standing, we undertook a comprehensive assessment, meticulously comparing our method to various existing approaches from the literature, including those proposed by Hua, Es-sabry, and Faragallah. This systematic process accentuated the high level of responsiveness and sensitivity inherent in our approach, thus underscoring its innovative and promising nature\",\"PeriodicalId\":161392,\"journal\":{\"name\":\"The International Arab Journal of Information Technology\",\"volume\":\"44 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Arab Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34028/iajit/21/1/1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Arab Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/21/1/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的核心是在图像密码学领域做出重大科学贡献。所选择的方法包括利用二维阿诺德猫图变换,在原始图像参数的引导下,重新定位和修改像素位置。乘法组 Z/nZ 的构建由 modulo n 的等价类组成,它依赖于从二维正弦对数调制图衍生出的超混沌序列。该序列与前一步骤之间的相关性产生了一种不可预测的模糊模式,有效地改变了结果矩阵的统计特性,并在整个加密图像中分散了各个比特的影响。对于每个像素,加密过程都需要与 Z/nZ 组进行 XOR 运算,然后根据前一个像素的三个最小有效位(LSB)进行右移。每一个像素都要重复这一细致的过程,不留任何与原始明文图像相似或关联的痕迹,从而有效地使原始明文图像变得模糊不清、难以破译。为了衡量我们算法的有效性,我们利用不同的标准对其进行了全面评估,包括直方图分析,该分析揭示了加密图像中几乎一致的模式。熵值接近 8,而相关性分析则明显接近 0。此外,我们还对我们的方法进行了差分攻击,计算得出的像素变化率(NPCR > 99.6)和统一平均变化强度(UACI > 33.2)值证实了我们方法的强度和弹性。此外,为了确定其比较地位,我们进行了全面评估,将我们的方法与文献中现有的各种方法进行了细致比较,包括 Hua、Es-sabry 和 Faragallah 提出的方法。这一系统化的过程凸显了我们的方法所固有的高度响应性和敏感性,从而强调了其创新性和前景广阔的性质
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Coupling of a Multiplicative Group and the Theory of Chaos in the Encryptions of Images
This study is centered on a significant scientific contribution within the realm of image cryptography. The chosen approach involves employing the bidimensional Arnold Cat Map transformation to reposition and modify pixel locations, guided by parameters derived from the original image. The construction of the multiplicative group Z/nZ, comprising equivalence classes modulo n, relies on a hyper-chaotic sequence derived from the 2D sinusoidal logistic modulation map. The correlation between this sequence and the preceding step yields an unpredictable blurring pattern, effectively altering the statistical properties of resulting matrices and distributing the influence of individual bits across the entire encrypted image. For each pixel, the encryption process entails an XOR operation with the Z/nZ group, followed by a right shift based on the three Least Significant Bits (LSB) of the preceding pixel. This meticulous procedure is iterated for every pixel, leaving no trace of similarity or association with the original plaintext image, effectively rendering it blurred and indecipherable. To gauge the efficacy of our algorithm, we subjected it to thorough evaluation utilizing diverse criteria, including histogram analysis, which unveiled a nearly uniform pattern in the encrypted images. Entropy values were found to be close to 8, while the correlation analysis exhibited a pronounced proximity to 0. Moreover, we subjected our approach to differential attacks, and the calculated values of the Number of Changing Pixel Rate (NPCR > 99.6) and the Unified Averaged Changed Intensity (UACI > 33.2) corroborated the strength and resilience of our methodology. In addition, to establish its comparative standing, we undertook a comprehensive assessment, meticulously comparing our method to various existing approaches from the literature, including those proposed by Hua, Es-sabry, and Faragallah. This systematic process accentuated the high level of responsiveness and sensitivity inherent in our approach, thus underscoring its innovative and promising nature
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cohesive Pair-Wises Constrained Deep Embedding for Semi-Supervised Clustering with Very Few Labeled Samples* Scrupulous SCGAN Framework for Recognition of Restored Images with Caffe based PCA Filtration Fuzzy Heuristics for Detecting and Preventing Black Hole Attack XAI-PDF: A Robust Framework for Malicious PDF Detection Leveraging SHAP-Based Feature Engineering Healthcare Data Security in Cloud Storage Using Light Weight Symmetric Key Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1