Muhammad Awais, Feroz Ahmed Soomro, Shreen El-Sapa, Rahim Bux Khokhar, Areej A. Almoneef
{"title":"基于𝑨𝒍𝟐𝑶𝟑和𝑪𝒖纳米粒子的𝑯𝟐𝑶纳米流体在 C 形部分加热矩形腔内流动的传热比较分析","authors":"Muhammad Awais, Feroz Ahmed Soomro, Shreen El-Sapa, Rahim Bux Khokhar, Areej A. Almoneef","doi":"10.22581/muet1982.2401.2917","DOIUrl":null,"url":null,"abstract":"The aim of the current study is to investigate the heat transfer performance of 𝐴𝑙2𝑂3 and 𝐶𝑢 nanoparticles suspended based in 𝐻2𝑂 nanofluids inside a partially heated C-shaped enclosure. The governing equations for heat and flow transfer are solved using the Finite Element Method. Heat transmission is affected by the type and form of nanoparticles. To study the improved heat transfer performance, four different shapes of nanoparticles-spherical, cylindrical, column, and lamina-have been used. The investigation showed that among the considered shapes of nanoparticles, the lamina shape of nanoparticles performed best. Considering lamina nanoparticles, in comparison to the simple nanofluids 𝐴𝑙2𝑂3−𝐻2𝑂 and 𝐶𝑢−𝐻2𝑂 the hybrid nanofluid 𝐴𝑙2𝑂3−𝐶𝑢−𝐻2𝑂 provides the enhanced heat transfer rate. The heat transfer is governed by convection at a higher Rayleigh number. On the other hand, the heat transfer rate is decreasing by increasing the impact of the magnetic field. For the increased heat transfer rate, the best choice is lamina nanoparticles and hybrid nanofluid 𝐴𝑙2𝑂3−𝐶𝑢−𝐻2𝑂.","PeriodicalId":44836,"journal":{"name":"Mehran University Research Journal of Engineering and Technology","volume":"109 10","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative heat transfer analysis of 𝑨𝒍𝟐𝑶𝟑 and 𝑪𝒖 nanoparticles based in 𝑯𝟐𝑶 nanofluids flow inside a C-shaped partially heated rectangular cavity\",\"authors\":\"Muhammad Awais, Feroz Ahmed Soomro, Shreen El-Sapa, Rahim Bux Khokhar, Areej A. Almoneef\",\"doi\":\"10.22581/muet1982.2401.2917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the current study is to investigate the heat transfer performance of 𝐴𝑙2𝑂3 and 𝐶𝑢 nanoparticles suspended based in 𝐻2𝑂 nanofluids inside a partially heated C-shaped enclosure. The governing equations for heat and flow transfer are solved using the Finite Element Method. Heat transmission is affected by the type and form of nanoparticles. To study the improved heat transfer performance, four different shapes of nanoparticles-spherical, cylindrical, column, and lamina-have been used. The investigation showed that among the considered shapes of nanoparticles, the lamina shape of nanoparticles performed best. Considering lamina nanoparticles, in comparison to the simple nanofluids 𝐴𝑙2𝑂3−𝐻2𝑂 and 𝐶𝑢−𝐻2𝑂 the hybrid nanofluid 𝐴𝑙2𝑂3−𝐶𝑢−𝐻2𝑂 provides the enhanced heat transfer rate. The heat transfer is governed by convection at a higher Rayleigh number. On the other hand, the heat transfer rate is decreasing by increasing the impact of the magnetic field. For the increased heat transfer rate, the best choice is lamina nanoparticles and hybrid nanofluid 𝐴𝑙2𝑂3−𝐶𝑢−𝐻2𝑂.\",\"PeriodicalId\":44836,\"journal\":{\"name\":\"Mehran University Research Journal of Engineering and Technology\",\"volume\":\"109 10\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mehran University Research Journal of Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22581/muet1982.2401.2917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mehran University Research Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/muet1982.2401.2917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative heat transfer analysis of 𝑨𝒍𝟐𝑶𝟑 and 𝑪𝒖 nanoparticles based in 𝑯𝟐𝑶 nanofluids flow inside a C-shaped partially heated rectangular cavity
The aim of the current study is to investigate the heat transfer performance of 𝐴𝑙2𝑂3 and 𝐶𝑢 nanoparticles suspended based in 𝐻2𝑂 nanofluids inside a partially heated C-shaped enclosure. The governing equations for heat and flow transfer are solved using the Finite Element Method. Heat transmission is affected by the type and form of nanoparticles. To study the improved heat transfer performance, four different shapes of nanoparticles-spherical, cylindrical, column, and lamina-have been used. The investigation showed that among the considered shapes of nanoparticles, the lamina shape of nanoparticles performed best. Considering lamina nanoparticles, in comparison to the simple nanofluids 𝐴𝑙2𝑂3−𝐻2𝑂 and 𝐶𝑢−𝐻2𝑂 the hybrid nanofluid 𝐴𝑙2𝑂3−𝐶𝑢−𝐻2𝑂 provides the enhanced heat transfer rate. The heat transfer is governed by convection at a higher Rayleigh number. On the other hand, the heat transfer rate is decreasing by increasing the impact of the magnetic field. For the increased heat transfer rate, the best choice is lamina nanoparticles and hybrid nanofluid 𝐴𝑙2𝑂3−𝐶𝑢−𝐻2𝑂.