A. Asghar, T. Y. Ying, Muhammad Javed Iqbal, Liaqat Ali
{"title":"受对流边界层流动和焦耳加热定律影响的混合纳米流体的热特性:双解案例研究","authors":"A. Asghar, T. Y. Ying, Muhammad Javed Iqbal, Liaqat Ali","doi":"10.1142/s0217984924501586","DOIUrl":null,"url":null,"abstract":"This study emphasizes the dual exposition of the impact of convective condition and the significant effects of magnetic field, heat source and velocity slip on hybrid nanofluid flow over the exponentially shrinking sheet. The hybrid nanofluid is regarded as a contemporary variety of nanofluid; consequently, it is utilized to enhance the efficiency of heat transfer. By applying the Tiwari–Das model, the key objective of the current research is to investigate the impact of involving factors Biot number, Eckert number, volume fraction, magnetohydrodynamic (MHD), slip and suction on the temperature and velocity profiles. In addition, the Nusselt number and skin friction variations have been explored against the suction effect on the solid volume fraction of copper [Formula: see text] [1–3%] and the Biot number [Formula: see text] [1–3%]. The nonlinear partial differential equations are converted to a set of an ordinary differential equations by incorporating exponential similarity vectors. Eventually, ordinary differential equations are rectified utilizing MATLAB bvp4c solver. The results demonstrate the presence of dual exposition for suction with varying values of copper volume fraction and the Biot number. The heat transmission rate is observed to escalate in both cases as the strength of the Biot and Eckert numbers intensifies in the range of 1–3%. In summary, the results show that duality and non-unique solutions occur in the aiding flow situation when the suction [Formula: see text], while there is no flow and unique solutions of hybrid nanofluid feasible when [Formula: see text].","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":" 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal characterization of hybrid nanofluid with impact of convective boundary layer flow and Joule heating law: Dual solutions case study\",\"authors\":\"A. Asghar, T. Y. Ying, Muhammad Javed Iqbal, Liaqat Ali\",\"doi\":\"10.1142/s0217984924501586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study emphasizes the dual exposition of the impact of convective condition and the significant effects of magnetic field, heat source and velocity slip on hybrid nanofluid flow over the exponentially shrinking sheet. The hybrid nanofluid is regarded as a contemporary variety of nanofluid; consequently, it is utilized to enhance the efficiency of heat transfer. By applying the Tiwari–Das model, the key objective of the current research is to investigate the impact of involving factors Biot number, Eckert number, volume fraction, magnetohydrodynamic (MHD), slip and suction on the temperature and velocity profiles. In addition, the Nusselt number and skin friction variations have been explored against the suction effect on the solid volume fraction of copper [Formula: see text] [1–3%] and the Biot number [Formula: see text] [1–3%]. The nonlinear partial differential equations are converted to a set of an ordinary differential equations by incorporating exponential similarity vectors. Eventually, ordinary differential equations are rectified utilizing MATLAB bvp4c solver. The results demonstrate the presence of dual exposition for suction with varying values of copper volume fraction and the Biot number. The heat transmission rate is observed to escalate in both cases as the strength of the Biot and Eckert numbers intensifies in the range of 1–3%. In summary, the results show that duality and non-unique solutions occur in the aiding flow situation when the suction [Formula: see text], while there is no flow and unique solutions of hybrid nanofluid feasible when [Formula: see text].\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924501586\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924501586","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Thermal characterization of hybrid nanofluid with impact of convective boundary layer flow and Joule heating law: Dual solutions case study
This study emphasizes the dual exposition of the impact of convective condition and the significant effects of magnetic field, heat source and velocity slip on hybrid nanofluid flow over the exponentially shrinking sheet. The hybrid nanofluid is regarded as a contemporary variety of nanofluid; consequently, it is utilized to enhance the efficiency of heat transfer. By applying the Tiwari–Das model, the key objective of the current research is to investigate the impact of involving factors Biot number, Eckert number, volume fraction, magnetohydrodynamic (MHD), slip and suction on the temperature and velocity profiles. In addition, the Nusselt number and skin friction variations have been explored against the suction effect on the solid volume fraction of copper [Formula: see text] [1–3%] and the Biot number [Formula: see text] [1–3%]. The nonlinear partial differential equations are converted to a set of an ordinary differential equations by incorporating exponential similarity vectors. Eventually, ordinary differential equations are rectified utilizing MATLAB bvp4c solver. The results demonstrate the presence of dual exposition for suction with varying values of copper volume fraction and the Biot number. The heat transmission rate is observed to escalate in both cases as the strength of the Biot and Eckert numbers intensifies in the range of 1–3%. In summary, the results show that duality and non-unique solutions occur in the aiding flow situation when the suction [Formula: see text], while there is no flow and unique solutions of hybrid nanofluid feasible when [Formula: see text].
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.