{"title":"作为 Li+ 潜在管状宿主的卤键网络模型:DFT 研究","authors":"R. Parra","doi":"10.3390/inorganics12010016","DOIUrl":null,"url":null,"abstract":"The formation of a halogen-bonded network using four NHX-(CH2)3-NX-(CH2)3-NHX molecules (X = Cl, Br, or I) is investigated using DFT. The self-assembly of the four basic motifs results in a tube-like structure with C4h symmetry, with one halogen-bonded network located at each end of the structure and one at its center. Each halogen-bonded network has four quasi-planar N-X···N interactions with binding energies that increase with the size of X. The structure is found to bind Li+ at each of the halogen-bonded networks, albeit more strongly at its center. The binding of Li+ is driven by halogen atom lone pairs that produce a rich electron density orthogonal to the halogen bond. The presence and strength of the interactions are further examined using AIM and NBO calculations. Lastly, IRC calculations are performed to examine the transitions between the Li+ complex minima and, thus, the potential for transporting the metal ion from one end of the tube to the other. Based on the tetrameric structure, a model intramolecular structure is built and considered as a potential host for Li+. In this case, the central intermolecular N-X···N network is replaced by an intramolecular Si-C≡C-Si network. Interestingly, both intermolecular and intramolecular structures exhibit similar Li+ binding abilities.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model Halogen-Bonded Network as a Potential Tube-like Host for Li+: A DFT Study\",\"authors\":\"R. Parra\",\"doi\":\"10.3390/inorganics12010016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formation of a halogen-bonded network using four NHX-(CH2)3-NX-(CH2)3-NHX molecules (X = Cl, Br, or I) is investigated using DFT. The self-assembly of the four basic motifs results in a tube-like structure with C4h symmetry, with one halogen-bonded network located at each end of the structure and one at its center. Each halogen-bonded network has four quasi-planar N-X···N interactions with binding energies that increase with the size of X. The structure is found to bind Li+ at each of the halogen-bonded networks, albeit more strongly at its center. The binding of Li+ is driven by halogen atom lone pairs that produce a rich electron density orthogonal to the halogen bond. The presence and strength of the interactions are further examined using AIM and NBO calculations. Lastly, IRC calculations are performed to examine the transitions between the Li+ complex minima and, thus, the potential for transporting the metal ion from one end of the tube to the other. Based on the tetrameric structure, a model intramolecular structure is built and considered as a potential host for Li+. In this case, the central intermolecular N-X···N network is replaced by an intramolecular Si-C≡C-Si network. Interestingly, both intermolecular and intramolecular structures exhibit similar Li+ binding abilities.\",\"PeriodicalId\":13572,\"journal\":{\"name\":\"Inorganics\",\"volume\":\" 9\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/inorganics12010016\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics12010016","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
A Model Halogen-Bonded Network as a Potential Tube-like Host for Li+: A DFT Study
The formation of a halogen-bonded network using four NHX-(CH2)3-NX-(CH2)3-NHX molecules (X = Cl, Br, or I) is investigated using DFT. The self-assembly of the four basic motifs results in a tube-like structure with C4h symmetry, with one halogen-bonded network located at each end of the structure and one at its center. Each halogen-bonded network has four quasi-planar N-X···N interactions with binding energies that increase with the size of X. The structure is found to bind Li+ at each of the halogen-bonded networks, albeit more strongly at its center. The binding of Li+ is driven by halogen atom lone pairs that produce a rich electron density orthogonal to the halogen bond. The presence and strength of the interactions are further examined using AIM and NBO calculations. Lastly, IRC calculations are performed to examine the transitions between the Li+ complex minima and, thus, the potential for transporting the metal ion from one end of the tube to the other. Based on the tetrameric structure, a model intramolecular structure is built and considered as a potential host for Li+. In this case, the central intermolecular N-X···N network is replaced by an intramolecular Si-C≡C-Si network. Interestingly, both intermolecular and intramolecular structures exhibit similar Li+ binding abilities.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD