{"title":"利用三方层卷积神经网络进行人类情感识别:多模态数据方法","authors":"Saisanthiya Dharmichand, Supraja Perumal","doi":"10.18280/ts.400619","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":49430,"journal":{"name":"Traitement Du Signal","volume":" 15","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Tripartite Tier Convolutional Neural Network for Human Emotion Recognition: A Multimodal Data Approach\",\"authors\":\"Saisanthiya Dharmichand, Supraja Perumal\",\"doi\":\"10.18280/ts.400619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":49430,\"journal\":{\"name\":\"Traitement Du Signal\",\"volume\":\" 15\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traitement Du Signal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.18280/ts.400619\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traitement Du Signal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18280/ts.400619","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
期刊介绍:
The TS provides rapid dissemination of original research in the field of signal processing, imaging and visioning. Since its founding in 1984, the journal has published articles that present original research results of a fundamental, methodological or applied nature. The editorial board welcomes articles on the latest and most promising results of academic research, including both theoretical results and case studies.
The TS welcomes original research papers, technical notes and review articles on various disciplines, including but not limited to:
Signal processing
Imaging
Visioning
Control
Filtering
Compression
Data transmission
Noise reduction
Deconvolution
Prediction
Identification
Classification.