通过准同步增益调制在 Er 型光纤激光器中产生静态高能量脉冲

IF 2.1 4区 物理与天体物理 Q2 OPTICS Photonics Pub Date : 2023-12-30 DOI:10.3390/photonics11010037
B. Nyushkov, A. Ivanenko, Natalia Koliada, Sergey Smirnov
{"title":"通过准同步增益调制在 Er 型光纤激光器中产生静态高能量脉冲","authors":"B. Nyushkov, A. Ivanenko, Natalia Koliada, Sergey Smirnov","doi":"10.3390/photonics11010037","DOIUrl":null,"url":null,"abstract":"We demonstrate the feasibility of triggering stationary high-energy pulse generation in Er-doped fiber lasers at ~1.5 µm via quasi-synchronous gain modulation. This simple method relies upon the sine-wave modulation of pump power at a frequency slightly surpassing the intrinsic frequency spacing of longitudinal modes in the laser cavity. This was previously implemented only in Yb-doped fiber lasers at ~1.1 µm. Here, for the first time, we experimentally validate the pulse shaping capabilities of this method also in Er fiber lasers, which, unlike Yb fiber lasers, have a three-level laser energy diagram (when pumped at 0.98 µm) with a very long-lived (10 ms) upper laser level. The feasibility of the method was validated both for normal and anomalous intracavity dispersion, which was not available in previous implementations in Yb fiber lasers at ~1.1 µm. Thus, the stable generation of a regular train of discrete nanosecond pulses with an energy of up to 180 nJ was achieved in our test-bed Er fiber laser upon the quasi-synchronous sine-wave modulation of the pump power at 0.98 µm. The results of our study testify to the general applicability of this affordable and reliable method for high-energy pulse generation in various rare-earth-doped fiber lasers.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":" 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationary High-Energy Pulse Generation in Er-Based Fiber Lasers via Quasi-Synchronous Gain Modulation\",\"authors\":\"B. Nyushkov, A. Ivanenko, Natalia Koliada, Sergey Smirnov\",\"doi\":\"10.3390/photonics11010037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the feasibility of triggering stationary high-energy pulse generation in Er-doped fiber lasers at ~1.5 µm via quasi-synchronous gain modulation. This simple method relies upon the sine-wave modulation of pump power at a frequency slightly surpassing the intrinsic frequency spacing of longitudinal modes in the laser cavity. This was previously implemented only in Yb-doped fiber lasers at ~1.1 µm. Here, for the first time, we experimentally validate the pulse shaping capabilities of this method also in Er fiber lasers, which, unlike Yb fiber lasers, have a three-level laser energy diagram (when pumped at 0.98 µm) with a very long-lived (10 ms) upper laser level. The feasibility of the method was validated both for normal and anomalous intracavity dispersion, which was not available in previous implementations in Yb fiber lasers at ~1.1 µm. Thus, the stable generation of a regular train of discrete nanosecond pulses with an energy of up to 180 nJ was achieved in our test-bed Er fiber laser upon the quasi-synchronous sine-wave modulation of the pump power at 0.98 µm. The results of our study testify to the general applicability of this affordable and reliable method for high-energy pulse generation in various rare-earth-doped fiber lasers.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11010037\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010037","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了通过准同步增益调制在 ~1.5 µm 波长的掺铒光纤激光器中触发静态高能脉冲发生的可行性。这种简单的方法依赖于泵浦功率的正弦波调制,频率略高于激光腔中纵向模式的固有频率间隔。这种方法以前只在 ~1.1 µm 的掺镱光纤激光器中使用过。与掺镱光纤激光器不同,铒光纤激光器具有三电平激光能量图(在 0.98 µm 波长下泵送时),上电平激光持续时间很长(10 毫秒)。该方法的可行性在正常和反常腔内色散方面都得到了验证,而以前在 ~1.1 µm 波长的掺镱光纤激光器中没有这种色散。因此,在我们的试验台 Er 光纤激光器中,通过对 0.98 µm 的泵浦功率进行准同步正弦波调制,可以稳定地产生一列能量高达 180 nJ 的有规则的离散纳秒脉冲。我们的研究结果证明了这种经济可靠的方法在各种掺稀土光纤激光器中产生高能量脉冲的普遍适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stationary High-Energy Pulse Generation in Er-Based Fiber Lasers via Quasi-Synchronous Gain Modulation
We demonstrate the feasibility of triggering stationary high-energy pulse generation in Er-doped fiber lasers at ~1.5 µm via quasi-synchronous gain modulation. This simple method relies upon the sine-wave modulation of pump power at a frequency slightly surpassing the intrinsic frequency spacing of longitudinal modes in the laser cavity. This was previously implemented only in Yb-doped fiber lasers at ~1.1 µm. Here, for the first time, we experimentally validate the pulse shaping capabilities of this method also in Er fiber lasers, which, unlike Yb fiber lasers, have a three-level laser energy diagram (when pumped at 0.98 µm) with a very long-lived (10 ms) upper laser level. The feasibility of the method was validated both for normal and anomalous intracavity dispersion, which was not available in previous implementations in Yb fiber lasers at ~1.1 µm. Thus, the stable generation of a regular train of discrete nanosecond pulses with an energy of up to 180 nJ was achieved in our test-bed Er fiber laser upon the quasi-synchronous sine-wave modulation of the pump power at 0.98 µm. The results of our study testify to the general applicability of this affordable and reliable method for high-energy pulse generation in various rare-earth-doped fiber lasers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Complex Noise-Based Phase Retrieval Using Total Variation and Wavelet Transform Regularization Investigation of Multiple High Quality-Factor Fano Resonances in Asymmetric Nanopillar Arrays for Optical Sensing An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements Dual-Polarized Reconfigurable Manipulation Based on Flexible-Printed Intelligent Reflection Surface Multi-Array Visible-Light Optical Generalized Spatial Multiplexing–Multiple Input Multiple-Output System with Pearson Coefficient-Based Antenna Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1