Pei-Xuan Li, Hsun-Ping Hsieh, Chiang Fan Yang, Ding-You Wu, Ching-Chung Ko
{"title":"增强肝癌诊断的鲁棒性:具有轻量级融合和有效数据增强功能的多模态对比学习器","authors":"Pei-Xuan Li, Hsun-Ping Hsieh, Chiang Fan Yang, Ding-You Wu, Ching-Chung Ko","doi":"10.1145/3639414","DOIUrl":null,"url":null,"abstract":"This paper explores the application of self-supervised contrastive learning in the medical domain, focusing on classification of multi-modality Magnetic Resonance (MR) images. To address the challenges of limited and hard-to-annotate medical data, we introduce multi-modality data augmentation (MDA) and cross-modality group convolution (CGC). In the pre-training phase, we leverage Simple Siamese networks to maximize the similarity between two augmented MR images from a patient, without a handcrafted pretext task. Our approach also combines 3D and 2D group convolution with a channel shuffle operation to efficiently incorporate different modalities of image features. Evaluation on liver MR images from a well-known hospital in Taiwan demonstrates a significant improvement over previous methods. This work contributes to advancing multi-modality contrastive learning, particularly in the context of medical imaging, offering enhanced tools for analyzing complex image data.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":" 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Robust Liver Cancer Diagnosis: A Contrastive Multi-Modality Learner with Lightweight Fusion and Effective Data Augmentation\",\"authors\":\"Pei-Xuan Li, Hsun-Ping Hsieh, Chiang Fan Yang, Ding-You Wu, Ching-Chung Ko\",\"doi\":\"10.1145/3639414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the application of self-supervised contrastive learning in the medical domain, focusing on classification of multi-modality Magnetic Resonance (MR) images. To address the challenges of limited and hard-to-annotate medical data, we introduce multi-modality data augmentation (MDA) and cross-modality group convolution (CGC). In the pre-training phase, we leverage Simple Siamese networks to maximize the similarity between two augmented MR images from a patient, without a handcrafted pretext task. Our approach also combines 3D and 2D group convolution with a channel shuffle operation to efficiently incorporate different modalities of image features. Evaluation on liver MR images from a well-known hospital in Taiwan demonstrates a significant improvement over previous methods. This work contributes to advancing multi-modality contrastive learning, particularly in the context of medical imaging, offering enhanced tools for analyzing complex image data.\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\" 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3639414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3639414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Robust Liver Cancer Diagnosis: A Contrastive Multi-Modality Learner with Lightweight Fusion and Effective Data Augmentation
This paper explores the application of self-supervised contrastive learning in the medical domain, focusing on classification of multi-modality Magnetic Resonance (MR) images. To address the challenges of limited and hard-to-annotate medical data, we introduce multi-modality data augmentation (MDA) and cross-modality group convolution (CGC). In the pre-training phase, we leverage Simple Siamese networks to maximize the similarity between two augmented MR images from a patient, without a handcrafted pretext task. Our approach also combines 3D and 2D group convolution with a channel shuffle operation to efficiently incorporate different modalities of image features. Evaluation on liver MR images from a well-known hospital in Taiwan demonstrates a significant improvement over previous methods. This work contributes to advancing multi-modality contrastive learning, particularly in the context of medical imaging, offering enhanced tools for analyzing complex image data.