{"title":"单面加热条件下带有扭曲带插入物的圆形通道中过冷水的压降实验研究","authors":"G. Zhu, Ge Mei, Q. Bi, Shujian Tian","doi":"10.3390/en17010193","DOIUrl":null,"url":null,"abstract":"The pressure drop characteristics of subcooled water were experimentally investigated in a circular cooling channel with and without a twisted tape (TT) under high heat fluxes, which was designed for the water-cooling structure of the divertor target in a tokamak device. The working medium was deionized water, and the main parameters were mass flux G = 3000–8000 kg·m−2·s−1, inlet pressure of the test section p = 3, 4.2, 5 MPa, equivalent one-side heating flux qe = 5~10 MW·m−2. The off-center circular channel is electrically heated to simulate the unilateral radiation heating on the divertor target by high-temperature plasma. The pressure drop experiment of vertical upward circular cooling channels under high and unilateral heat flux is carried out. The influences of the TT and system parameters such as qe, G, and p on the pressure drop of the test section (Δp) were discussed in detail. In the single-phase (SP) flow region, Δp is mainly affected by the TT, G, and qe. The pressure drop with a TT is significantly higher than that without a TT, a higher G and a lower qe lead to a greater Δp. In the subcooled boiling (SB) flow region, Δp is correlated with the TT, qe, G, and p: the influence of the TT and G decreases, while the influence of p increases. The higher the qe, the higher the G, and the lower the p, the larger the Δp. The results show that almost all of the SP pressure drop correlations for heated circular channels overestimate the experimental pressure drop coefficient ratio for a given viscosity ratio. According to the test results, a new correlation of SP pressure drop under high and unilateral heat fluxes has been proposed, the average error (AE) and root mean square error (RMSE) of which are 0.26% and 3.17%, respectively.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 25","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigations on Pressure Drop for Subcooled Water in a Circular Channel with a Twisted Tape Insert under One-Side Heating Conditions\",\"authors\":\"G. Zhu, Ge Mei, Q. Bi, Shujian Tian\",\"doi\":\"10.3390/en17010193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pressure drop characteristics of subcooled water were experimentally investigated in a circular cooling channel with and without a twisted tape (TT) under high heat fluxes, which was designed for the water-cooling structure of the divertor target in a tokamak device. The working medium was deionized water, and the main parameters were mass flux G = 3000–8000 kg·m−2·s−1, inlet pressure of the test section p = 3, 4.2, 5 MPa, equivalent one-side heating flux qe = 5~10 MW·m−2. The off-center circular channel is electrically heated to simulate the unilateral radiation heating on the divertor target by high-temperature plasma. The pressure drop experiment of vertical upward circular cooling channels under high and unilateral heat flux is carried out. The influences of the TT and system parameters such as qe, G, and p on the pressure drop of the test section (Δp) were discussed in detail. In the single-phase (SP) flow region, Δp is mainly affected by the TT, G, and qe. The pressure drop with a TT is significantly higher than that without a TT, a higher G and a lower qe lead to a greater Δp. In the subcooled boiling (SB) flow region, Δp is correlated with the TT, qe, G, and p: the influence of the TT and G decreases, while the influence of p increases. The higher the qe, the higher the G, and the lower the p, the larger the Δp. The results show that almost all of the SP pressure drop correlations for heated circular channels overestimate the experimental pressure drop coefficient ratio for a given viscosity ratio. According to the test results, a new correlation of SP pressure drop under high and unilateral heat fluxes has been proposed, the average error (AE) and root mean square error (RMSE) of which are 0.26% and 3.17%, respectively.\",\"PeriodicalId\":11557,\"journal\":{\"name\":\"Energies\",\"volume\":\" 25\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17010193\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17010193","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
实验研究了在高热通量条件下,过冷水在带或不带扭曲带(TT)的圆形冷却通道中的压降特性,该冷却通道是为托卡马克装置中分流靶的水冷结构设计的。工作介质为去离子水,主要参数为质量通量 G = 3000-8000 kg-m-2-s-1,试验段入口压力 p = 3、4.2、5 MPa,等效单面加热通量 qe = 5~10 MW-m-2。对偏离中心的圆形通道进行电加热,以模拟高温等离子体对分流靶的单侧辐射加热。进行了高单侧热通量下垂直向上圆形冷却通道的压降实验。详细讨论了 TT 以及 qe、G 和 p 等系统参数对试验段压降(Δp)的影响。在单相(SP)流区域,Δp 主要受 TT、G 和 qe 的影响。带 TT 的压降明显高于不带 TT 的压降,较高的 G 值和较低的 qe 值会导致较大的 Δp。在过冷沸腾 (SB) 流动区域,Δp 与 TT、qe、G 和 p 相关:TT 和 G 的影响减小,而 p 的影响增大。qe 越高,G 越高,p 越低,Δp 越大。结果表明,在给定粘度比的情况下,几乎所有加热圆形通道的 SP 压降相关系数都高估了实验压降系数比。根据试验结果,提出了一种新的高热流量和单侧热流量下的 SP 压降相关性,其平均误差(AE)和均方根误差(RMSE)分别为 0.26% 和 3.17%。
Experimental Investigations on Pressure Drop for Subcooled Water in a Circular Channel with a Twisted Tape Insert under One-Side Heating Conditions
The pressure drop characteristics of subcooled water were experimentally investigated in a circular cooling channel with and without a twisted tape (TT) under high heat fluxes, which was designed for the water-cooling structure of the divertor target in a tokamak device. The working medium was deionized water, and the main parameters were mass flux G = 3000–8000 kg·m−2·s−1, inlet pressure of the test section p = 3, 4.2, 5 MPa, equivalent one-side heating flux qe = 5~10 MW·m−2. The off-center circular channel is electrically heated to simulate the unilateral radiation heating on the divertor target by high-temperature plasma. The pressure drop experiment of vertical upward circular cooling channels under high and unilateral heat flux is carried out. The influences of the TT and system parameters such as qe, G, and p on the pressure drop of the test section (Δp) were discussed in detail. In the single-phase (SP) flow region, Δp is mainly affected by the TT, G, and qe. The pressure drop with a TT is significantly higher than that without a TT, a higher G and a lower qe lead to a greater Δp. In the subcooled boiling (SB) flow region, Δp is correlated with the TT, qe, G, and p: the influence of the TT and G decreases, while the influence of p increases. The higher the qe, the higher the G, and the lower the p, the larger the Δp. The results show that almost all of the SP pressure drop correlations for heated circular channels overestimate the experimental pressure drop coefficient ratio for a given viscosity ratio. According to the test results, a new correlation of SP pressure drop under high and unilateral heat fluxes has been proposed, the average error (AE) and root mean square error (RMSE) of which are 0.26% and 3.17%, respectively.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.