{"title":"智能 O-RAN 中的高效视频 QoE 预测","authors":"Aditya Padmakar Kulkarni, N. Saxena, A. Roy","doi":"10.37256/cnc.1220233661","DOIUrl":null,"url":null,"abstract":"Open Radio Access Network (O-RAN) is a platform developed by a collaboration between wireless operators, infrastructure vendors, and service providers for deploying mobile fronthaul and midhaul networks, built entirely on cloud-native principles. The vision of O-RAN lies in the virtualization of traditional wireless infrastructure components, like Central Units (CU), Radio Units (RU), and Distributed Units (DU). O-RAN decouples the above-mentioned wireless infrastructure components into open-source elements, operating consistently with other elements of different vendors in the network. Quality of Experience (QoE) deals with a user's subjective measure of satisfaction. RAN Intelligent Controller (RIC) in O-RAN provides flexibility to intelligently program and control RAN functions using AI/ML-based models. We argue that various QoE parameters can be measured and operated by the RIC in O-RAN. We propose to improve the efficiency of O-RAN's radio resources by creating a RIC xApp that estimates the QoE measured using Video Mean Opinion of Score (MOS), and accurately optimizes the usage of radio resources across multiple network slices. We use predictive AI/ML-based models to accurately predict the QoE parameters in the network after which we can optimize the usage of network compo-nents leading to an enhanced user experience. Simulation results on 3 simulated data sets show that our proposed approach can achieve up to 95% QoE prediction accuracy.","PeriodicalId":505128,"journal":{"name":"Computer Networks and Communications","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Video QoE Prediction in Intelligent O-RAN\",\"authors\":\"Aditya Padmakar Kulkarni, N. Saxena, A. Roy\",\"doi\":\"10.37256/cnc.1220233661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Open Radio Access Network (O-RAN) is a platform developed by a collaboration between wireless operators, infrastructure vendors, and service providers for deploying mobile fronthaul and midhaul networks, built entirely on cloud-native principles. The vision of O-RAN lies in the virtualization of traditional wireless infrastructure components, like Central Units (CU), Radio Units (RU), and Distributed Units (DU). O-RAN decouples the above-mentioned wireless infrastructure components into open-source elements, operating consistently with other elements of different vendors in the network. Quality of Experience (QoE) deals with a user's subjective measure of satisfaction. RAN Intelligent Controller (RIC) in O-RAN provides flexibility to intelligently program and control RAN functions using AI/ML-based models. We argue that various QoE parameters can be measured and operated by the RIC in O-RAN. We propose to improve the efficiency of O-RAN's radio resources by creating a RIC xApp that estimates the QoE measured using Video Mean Opinion of Score (MOS), and accurately optimizes the usage of radio resources across multiple network slices. We use predictive AI/ML-based models to accurately predict the QoE parameters in the network after which we can optimize the usage of network compo-nents leading to an enhanced user experience. Simulation results on 3 simulated data sets show that our proposed approach can achieve up to 95% QoE prediction accuracy.\",\"PeriodicalId\":505128,\"journal\":{\"name\":\"Computer Networks and Communications\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cnc.1220233661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cnc.1220233661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Video QoE Prediction in Intelligent O-RAN
Open Radio Access Network (O-RAN) is a platform developed by a collaboration between wireless operators, infrastructure vendors, and service providers for deploying mobile fronthaul and midhaul networks, built entirely on cloud-native principles. The vision of O-RAN lies in the virtualization of traditional wireless infrastructure components, like Central Units (CU), Radio Units (RU), and Distributed Units (DU). O-RAN decouples the above-mentioned wireless infrastructure components into open-source elements, operating consistently with other elements of different vendors in the network. Quality of Experience (QoE) deals with a user's subjective measure of satisfaction. RAN Intelligent Controller (RIC) in O-RAN provides flexibility to intelligently program and control RAN functions using AI/ML-based models. We argue that various QoE parameters can be measured and operated by the RIC in O-RAN. We propose to improve the efficiency of O-RAN's radio resources by creating a RIC xApp that estimates the QoE measured using Video Mean Opinion of Score (MOS), and accurately optimizes the usage of radio resources across multiple network slices. We use predictive AI/ML-based models to accurately predict the QoE parameters in the network after which we can optimize the usage of network compo-nents leading to an enhanced user experience. Simulation results on 3 simulated data sets show that our proposed approach can achieve up to 95% QoE prediction accuracy.