{"title":"使用充气式软触觉传感器进行步态传感和触觉反馈","authors":"Emiliano Quinones Yumbla, Jahnav Rokalaboina, Amber Kanechika, Souvik Poddar, Tolemy M. Nibi, Wenlong Zhang","doi":"10.1115/1.4064377","DOIUrl":null,"url":null,"abstract":"Collecting gait data and providing haptic feedback are essential for the safety and efficiency of robot-based rehabilitation. However, readily available devices that can perform both are scarce. This work presents a novel method for mutual sensing and haptic feedback, through the development of an Inflatable Soft Haptic Sensor (ISHASE). The design, modeling and characterization of ISHASE are discussed. Four ISHASE are embedded in the insole of a shoe to measure ground reaction forces and provide haptic feedback. Four participants were recruited to evaluate the performance of ISHASE as a sensor and haptic device. Experimental results indicate that ISHASE can accurately estimate the user's ground reaction forces while walking, with a maximum and a minimum accuracy of 91% and 85% respectively. Haptic feedback was delivered to four different locations under the foot and the users could identify the location with an average 92% accuracy. A case study, that exemplifies a rehabilitation scenario, is presented to demonstrate the ISHASE's usefulness for mutual sensing and haptic feedback.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"197 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gait Sensing and Haptic Feedback Using an Inflatable Soft Haptic Sensor\",\"authors\":\"Emiliano Quinones Yumbla, Jahnav Rokalaboina, Amber Kanechika, Souvik Poddar, Tolemy M. Nibi, Wenlong Zhang\",\"doi\":\"10.1115/1.4064377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collecting gait data and providing haptic feedback are essential for the safety and efficiency of robot-based rehabilitation. However, readily available devices that can perform both are scarce. This work presents a novel method for mutual sensing and haptic feedback, through the development of an Inflatable Soft Haptic Sensor (ISHASE). The design, modeling and characterization of ISHASE are discussed. Four ISHASE are embedded in the insole of a shoe to measure ground reaction forces and provide haptic feedback. Four participants were recruited to evaluate the performance of ISHASE as a sensor and haptic device. Experimental results indicate that ISHASE can accurately estimate the user's ground reaction forces while walking, with a maximum and a minimum accuracy of 91% and 85% respectively. Haptic feedback was delivered to four different locations under the foot and the users could identify the location with an average 92% accuracy. A case study, that exemplifies a rehabilitation scenario, is presented to demonstrate the ISHASE's usefulness for mutual sensing and haptic feedback.\",\"PeriodicalId\":327130,\"journal\":{\"name\":\"ASME Letters in Dynamic Systems and Control\",\"volume\":\"197 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Letters in Dynamic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gait Sensing and Haptic Feedback Using an Inflatable Soft Haptic Sensor
Collecting gait data and providing haptic feedback are essential for the safety and efficiency of robot-based rehabilitation. However, readily available devices that can perform both are scarce. This work presents a novel method for mutual sensing and haptic feedback, through the development of an Inflatable Soft Haptic Sensor (ISHASE). The design, modeling and characterization of ISHASE are discussed. Four ISHASE are embedded in the insole of a shoe to measure ground reaction forces and provide haptic feedback. Four participants were recruited to evaluate the performance of ISHASE as a sensor and haptic device. Experimental results indicate that ISHASE can accurately estimate the user's ground reaction forces while walking, with a maximum and a minimum accuracy of 91% and 85% respectively. Haptic feedback was delivered to four different locations under the foot and the users could identify the location with an average 92% accuracy. A case study, that exemplifies a rehabilitation scenario, is presented to demonstrate the ISHASE's usefulness for mutual sensing and haptic feedback.