未熔烧钛磁铁矿球团结构对静态压缩强度的影响

A. N. Dmitriev, V. G. Smirnova, E. Vyaznikova, G. Y. Vit’kina, A. S. Smirnov
{"title":"未熔烧钛磁铁矿球团结构对静态压缩强度的影响","authors":"A. N. Dmitriev, V. G. Smirnova, E. Vyaznikova, G. Y. Vit’kina, A. S. Smirnov","doi":"10.17073/0368-0797-2023-6-696-704","DOIUrl":null,"url":null,"abstract":"Burnt pellets must retain their strength from the moment they are taken out of an induration machine until they are loaded into a blast furnace. One of the indicators of the burnt pellets’ strength is the compressive strength, i.e. the ultimate force. In experiments to determine compressive strength, the main type of fracture is occurrence and development of cracks that pass through the core center of pellets (where the maximum radial tensile stresses present) or near it. The paper presents the requirements for static compression strength imposed by blast furnace production to iron ore pellets. Using an optical and scanning electron microscope equipped with an energy-dispersive microanalyzer, we analyzed the relationship of structural components and pores in the core of burnt unfluxed iron ore titanomagnetite pellets with the ultimate force under static compression. By scanning electron microscopy and X-ray spectral microanalysis, it was established that the core of pellets is a multiphase material, and its main phases are titanomagnetite, magnetite, titanohematite, hematite and aluminosilicate binder. Optical microscopy made it possible to establish the microstructure of the pellet core, which has three types of microstructures: non-oxidized core (magnetite or titanomagnetite), partially oxidized core – around (magnetite or titanomagnetite) hematite grains (titanohematite) and oxidized core (hematite and titanohematite). The main factors for obtaining pellets with an ultimate force of more than 2.5 kN/pellet according to the requirements of blast furnace production are: the number of closed macropores and the number of large grains in the core. It is shown that with an increase in the number of closed macropores and the number of large grains in the core, the ultimate force is reduced from 3.5 kN to 0.87kN/pellet.","PeriodicalId":14630,"journal":{"name":"Izvestiya. Ferrous Metallurgy","volume":"77 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of structure of unfluxed burnt titanomagnetite pellets on strength under static compression\",\"authors\":\"A. N. Dmitriev, V. G. Smirnova, E. Vyaznikova, G. Y. Vit’kina, A. S. Smirnov\",\"doi\":\"10.17073/0368-0797-2023-6-696-704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Burnt pellets must retain their strength from the moment they are taken out of an induration machine until they are loaded into a blast furnace. One of the indicators of the burnt pellets’ strength is the compressive strength, i.e. the ultimate force. In experiments to determine compressive strength, the main type of fracture is occurrence and development of cracks that pass through the core center of pellets (where the maximum radial tensile stresses present) or near it. The paper presents the requirements for static compression strength imposed by blast furnace production to iron ore pellets. Using an optical and scanning electron microscope equipped with an energy-dispersive microanalyzer, we analyzed the relationship of structural components and pores in the core of burnt unfluxed iron ore titanomagnetite pellets with the ultimate force under static compression. By scanning electron microscopy and X-ray spectral microanalysis, it was established that the core of pellets is a multiphase material, and its main phases are titanomagnetite, magnetite, titanohematite, hematite and aluminosilicate binder. Optical microscopy made it possible to establish the microstructure of the pellet core, which has three types of microstructures: non-oxidized core (magnetite or titanomagnetite), partially oxidized core – around (magnetite or titanomagnetite) hematite grains (titanohematite) and oxidized core (hematite and titanohematite). The main factors for obtaining pellets with an ultimate force of more than 2.5 kN/pellet according to the requirements of blast furnace production are: the number of closed macropores and the number of large grains in the core. It is shown that with an increase in the number of closed macropores and the number of large grains in the core, the ultimate force is reduced from 3.5 kN to 0.87kN/pellet.\",\"PeriodicalId\":14630,\"journal\":{\"name\":\"Izvestiya. Ferrous Metallurgy\",\"volume\":\"77 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya. Ferrous Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17073/0368-0797-2023-6-696-704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya. Ferrous Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0368-0797-2023-6-696-704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

烧结球团从压实机中取出到装入高炉的整个过程中都必须保持强度。衡量烧成球团强度的指标之一是抗压强度,即极限力。在确定抗压强度的实验中,断裂的主要类型是穿过球团核心中心(存在最大径向拉伸应力的地方)或其附近的裂缝的出现和发展。本文介绍了高炉生产对铁矿球团静态抗压强度的要求。我们使用配有能量色散显微分析仪的光学显微镜和扫描电子显微镜,分析了未熔铁矿钛磁铁矿球团芯部的结构成分和孔隙与静态压缩极限力之间的关系。通过扫描电子显微镜和 X 射线光谱显微分析,确定了球团的核心是一种多相材料,其主要相为钛磁铁矿、磁铁矿、钛铁矿、赤铁矿和铝硅酸盐粘结剂。通过光学显微镜可以确定球团芯部的微观结构,它有三种微观结构:非氧化芯部(磁铁矿或钛磁铁矿)、部分氧化芯部--围绕(磁铁矿或钛磁铁矿)赤铁矿颗粒(钛铁矿)和氧化芯部(赤铁矿和钛铁矿)。根据高炉生产的要求,获得极限力大于 2.5 千牛/粒的球团的主要因素是:封闭大孔的数量和核心中大颗粒的数量。结果表明,随着闭合大孔数量和芯中大颗粒数量的增加,极限力从 3.5 千牛/粒降低到 0.87 千牛/粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of structure of unfluxed burnt titanomagnetite pellets on strength under static compression
Burnt pellets must retain their strength from the moment they are taken out of an induration machine until they are loaded into a blast furnace. One of the indicators of the burnt pellets’ strength is the compressive strength, i.e. the ultimate force. In experiments to determine compressive strength, the main type of fracture is occurrence and development of cracks that pass through the core center of pellets (where the maximum radial tensile stresses present) or near it. The paper presents the requirements for static compression strength imposed by blast furnace production to iron ore pellets. Using an optical and scanning electron microscope equipped with an energy-dispersive microanalyzer, we analyzed the relationship of structural components and pores in the core of burnt unfluxed iron ore titanomagnetite pellets with the ultimate force under static compression. By scanning electron microscopy and X-ray spectral microanalysis, it was established that the core of pellets is a multiphase material, and its main phases are titanomagnetite, magnetite, titanohematite, hematite and aluminosilicate binder. Optical microscopy made it possible to establish the microstructure of the pellet core, which has three types of microstructures: non-oxidized core (magnetite or titanomagnetite), partially oxidized core – around (magnetite or titanomagnetite) hematite grains (titanohematite) and oxidized core (hematite and titanohematite). The main factors for obtaining pellets with an ultimate force of more than 2.5 kN/pellet according to the requirements of blast furnace production are: the number of closed macropores and the number of large grains in the core. It is shown that with an increase in the number of closed macropores and the number of large grains in the core, the ultimate force is reduced from 3.5 kN to 0.87kN/pellet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of yttrium additions on microstructure and corrosion resistance of Incoloy 825 alloy Investigation of performance limitations in continuous hot-dip galvanizing units associated with product defects Shewhart control charts – A simple but not easy tool for data analysis Influence of copper and silicon on phase transformations in the iron – carbon system Mathematical modeling of gas dynamics and off-gas post-combustion above the melt in a melter-gasifier furnace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1