M. Szubartowski, K. Migawa, S. Borowski, A. Neubauer, Ľubomír Hujo, Beáta Kopiláková
{"title":"应用半马尔可夫过程为 Enercon E82-2 风力涡轮机预防性维护系统建模","authors":"M. Szubartowski, K. Migawa, S. Borowski, A. Neubauer, Ľubomír Hujo, Beáta Kopiláková","doi":"10.3390/en17010199","DOIUrl":null,"url":null,"abstract":"The share of wind energy in the energy mix is continuously increasing. However, a very important issue associated with its generation is the high failure rate of wind turbines. This situation particularly concerns large wind turbines, which are expensive and have a lower tolerance for system damage caused by various failures and faults. Vulnerable components include sensors, electronic control units, electrical systems, hydraulic systems, generators, gearboxes, rotor blades, and so on. As a result, significant emphasis is placed on improving the reliability, availability, and productivity of wind turbines. It is extremely important to detect and identify abnormalities as early as possible and predict potential failures and damages and the remaining useful life of components. One way to ensure turbine efficiency is to plan and implement preventive repairs. This work shows a semi-Markov model of a preventive maintenance system based on Enercon E82-2 wind turbines. The system’s performance quality is evaluated based on profit over time and an asymptotic availability coefficient. The developed model establishes formulas describing the efficiency functions and formulates the conditions for the existence of extremes (maxima) of these functions. Computational examples provided at the end of the paper illustrate the obtained research results. A preventive maintenance model is developed that can be applied to wind turbine hazard prevention (determining optimal times for wind turbine preventive maintenance).","PeriodicalId":11557,"journal":{"name":"Energies","volume":"8 22","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the Semi-Markov Processes to Model the Enercon E82-2 Preventive Wind Turbine Maintenance System\",\"authors\":\"M. Szubartowski, K. Migawa, S. Borowski, A. Neubauer, Ľubomír Hujo, Beáta Kopiláková\",\"doi\":\"10.3390/en17010199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The share of wind energy in the energy mix is continuously increasing. However, a very important issue associated with its generation is the high failure rate of wind turbines. This situation particularly concerns large wind turbines, which are expensive and have a lower tolerance for system damage caused by various failures and faults. Vulnerable components include sensors, electronic control units, electrical systems, hydraulic systems, generators, gearboxes, rotor blades, and so on. As a result, significant emphasis is placed on improving the reliability, availability, and productivity of wind turbines. It is extremely important to detect and identify abnormalities as early as possible and predict potential failures and damages and the remaining useful life of components. One way to ensure turbine efficiency is to plan and implement preventive repairs. This work shows a semi-Markov model of a preventive maintenance system based on Enercon E82-2 wind turbines. The system’s performance quality is evaluated based on profit over time and an asymptotic availability coefficient. The developed model establishes formulas describing the efficiency functions and formulates the conditions for the existence of extremes (maxima) of these functions. Computational examples provided at the end of the paper illustrate the obtained research results. A preventive maintenance model is developed that can be applied to wind turbine hazard prevention (determining optimal times for wind turbine preventive maintenance).\",\"PeriodicalId\":11557,\"journal\":{\"name\":\"Energies\",\"volume\":\"8 22\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17010199\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17010199","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Application of the Semi-Markov Processes to Model the Enercon E82-2 Preventive Wind Turbine Maintenance System
The share of wind energy in the energy mix is continuously increasing. However, a very important issue associated with its generation is the high failure rate of wind turbines. This situation particularly concerns large wind turbines, which are expensive and have a lower tolerance for system damage caused by various failures and faults. Vulnerable components include sensors, electronic control units, electrical systems, hydraulic systems, generators, gearboxes, rotor blades, and so on. As a result, significant emphasis is placed on improving the reliability, availability, and productivity of wind turbines. It is extremely important to detect and identify abnormalities as early as possible and predict potential failures and damages and the remaining useful life of components. One way to ensure turbine efficiency is to plan and implement preventive repairs. This work shows a semi-Markov model of a preventive maintenance system based on Enercon E82-2 wind turbines. The system’s performance quality is evaluated based on profit over time and an asymptotic availability coefficient. The developed model establishes formulas describing the efficiency functions and formulates the conditions for the existence of extremes (maxima) of these functions. Computational examples provided at the end of the paper illustrate the obtained research results. A preventive maintenance model is developed that can be applied to wind turbine hazard prevention (determining optimal times for wind turbine preventive maintenance).
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.