M. Pérez‐Gussinyé, Yanfang Xin, Tiago Cunha, Raghu Ram, M. Andrés‐Martínez, Dongdong Dong, J. García-Pintado
{"title":"断裂边缘的同步断裂和断裂后热演化:对经典延伸模型的重新评估","authors":"M. Pérez‐Gussinyé, Yanfang Xin, Tiago Cunha, Raghu Ram, M. Andrés‐Martínez, Dongdong Dong, J. García-Pintado","doi":"10.1144/sp547-2023-128","DOIUrl":null,"url":null,"abstract":"The thermal evolution of continental rifted margins is key to understanding margin subsidence and hydrocarbon prospectivity. Observed heat-flow values however, do not always comply with classic rifting models. Here, we use 2D numerical models to investigate the relationship between rifting, sedimentation and thermal history of margins. We find that during the synrift, the basement heat flow and temperature are not only controlled by extension factor, but also by synrift sediment thickness and the evolution of deformation. As this progressively focuses oceanward, the proximal sectors thermally relax, while the distal sectors experience peak temperatures. In the postrift, the lithosphere under the hyperextended margins does not return to its original state, at least for ∼100 Myrs after breakup. Instead, it mimics that of the adjacent oceanic plate, which is thinner than the original continental plate. This results in heat flow increasing oceanward at postrift stages, when classic rifting theory predicts complete thermal relaxation. Our models also predict slightly increased heat flows in the adjacent oceanic crust, potentially extending hydrocarbon plays into distal margins and oceanic crust, previously discarded as immature. Finally, our models indicate that commonly used temperature approximations to calculate heat-flow during rifting, may strongly differ from those occurring in nature. Supplementary material at https://doi.org/10.6084/m9.figshare.c.6986110","PeriodicalId":281618,"journal":{"name":"Geological Society, London, Special Publications","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synrift and postrift thermal evolution of rifted margins: a re-evaluation of classic models of extension\",\"authors\":\"M. Pérez‐Gussinyé, Yanfang Xin, Tiago Cunha, Raghu Ram, M. Andrés‐Martínez, Dongdong Dong, J. García-Pintado\",\"doi\":\"10.1144/sp547-2023-128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermal evolution of continental rifted margins is key to understanding margin subsidence and hydrocarbon prospectivity. Observed heat-flow values however, do not always comply with classic rifting models. Here, we use 2D numerical models to investigate the relationship between rifting, sedimentation and thermal history of margins. We find that during the synrift, the basement heat flow and temperature are not only controlled by extension factor, but also by synrift sediment thickness and the evolution of deformation. As this progressively focuses oceanward, the proximal sectors thermally relax, while the distal sectors experience peak temperatures. In the postrift, the lithosphere under the hyperextended margins does not return to its original state, at least for ∼100 Myrs after breakup. Instead, it mimics that of the adjacent oceanic plate, which is thinner than the original continental plate. This results in heat flow increasing oceanward at postrift stages, when classic rifting theory predicts complete thermal relaxation. Our models also predict slightly increased heat flows in the adjacent oceanic crust, potentially extending hydrocarbon plays into distal margins and oceanic crust, previously discarded as immature. Finally, our models indicate that commonly used temperature approximations to calculate heat-flow during rifting, may strongly differ from those occurring in nature. Supplementary material at https://doi.org/10.6084/m9.figshare.c.6986110\",\"PeriodicalId\":281618,\"journal\":{\"name\":\"Geological Society, London, Special Publications\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Society, London, Special Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1144/sp547-2023-128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society, London, Special Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1144/sp547-2023-128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synrift and postrift thermal evolution of rifted margins: a re-evaluation of classic models of extension
The thermal evolution of continental rifted margins is key to understanding margin subsidence and hydrocarbon prospectivity. Observed heat-flow values however, do not always comply with classic rifting models. Here, we use 2D numerical models to investigate the relationship between rifting, sedimentation and thermal history of margins. We find that during the synrift, the basement heat flow and temperature are not only controlled by extension factor, but also by synrift sediment thickness and the evolution of deformation. As this progressively focuses oceanward, the proximal sectors thermally relax, while the distal sectors experience peak temperatures. In the postrift, the lithosphere under the hyperextended margins does not return to its original state, at least for ∼100 Myrs after breakup. Instead, it mimics that of the adjacent oceanic plate, which is thinner than the original continental plate. This results in heat flow increasing oceanward at postrift stages, when classic rifting theory predicts complete thermal relaxation. Our models also predict slightly increased heat flows in the adjacent oceanic crust, potentially extending hydrocarbon plays into distal margins and oceanic crust, previously discarded as immature. Finally, our models indicate that commonly used temperature approximations to calculate heat-flow during rifting, may strongly differ from those occurring in nature. Supplementary material at https://doi.org/10.6084/m9.figshare.c.6986110