针对有时间窗口的电动汽车路由问题的遗传算法和 A* 搜索联合算法

D.L. Wang, A. Ding, G.L. Chen, L. Zhang
{"title":"针对有时间窗口的电动汽车路由问题的遗传算法和 A* 搜索联合算法","authors":"D.L. Wang, A. Ding, G.L. Chen, L. Zhang","doi":"10.14743/apem2023.4.481","DOIUrl":null,"url":null,"abstract":"With growing environmental concerns, the focus on greenhouse gases (GHG) emissions in transportation has increased, and the combination of smart microgrids and electric vehicles (EVs) brings a new opportunity to solve this problem. Electric vehicle routing problem with time windows (EVRPTW) is an extension of the vehicle routing problem (VRP) problem, which can reach the combination of smart microgrids and EVs precisely by scheduling the EVs. However, the current genetic algorithm (GA) for solving this problem can easily fall into the dilemma of local optimization and slow iteration speed. In this paper, we present an integer hybrid planning model that introduces time of use and area price to enhance realism. We propose the GA-A* algorithm, which combines the A* algorithm and GA to improve global search capability and iteration speed. We conducted experiments on 16 benchmark cases, comparing the GA-A* algorithm with traditional GA and other search algorithms, results demonstrate significant enhancements in searchability and optimal solutions. In addition, we measured the grid load, and the model implements the vehicle-to-grid (V2G) mode, which serves as peak shaving and valley filling by integrating EVs into the grid for energy delivery and exchange through battery swapping. This research, ranging from model optimization to algorithm improvement, is an important step towards solving the EVRPTW problem and improving the environment.","PeriodicalId":445710,"journal":{"name":"Advances in Production Engineering & Management","volume":"10 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combined genetic algorithm and A* search algorithm for the electric vehicle routing problem with time windows\",\"authors\":\"D.L. Wang, A. Ding, G.L. Chen, L. Zhang\",\"doi\":\"10.14743/apem2023.4.481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With growing environmental concerns, the focus on greenhouse gases (GHG) emissions in transportation has increased, and the combination of smart microgrids and electric vehicles (EVs) brings a new opportunity to solve this problem. Electric vehicle routing problem with time windows (EVRPTW) is an extension of the vehicle routing problem (VRP) problem, which can reach the combination of smart microgrids and EVs precisely by scheduling the EVs. However, the current genetic algorithm (GA) for solving this problem can easily fall into the dilemma of local optimization and slow iteration speed. In this paper, we present an integer hybrid planning model that introduces time of use and area price to enhance realism. We propose the GA-A* algorithm, which combines the A* algorithm and GA to improve global search capability and iteration speed. We conducted experiments on 16 benchmark cases, comparing the GA-A* algorithm with traditional GA and other search algorithms, results demonstrate significant enhancements in searchability and optimal solutions. In addition, we measured the grid load, and the model implements the vehicle-to-grid (V2G) mode, which serves as peak shaving and valley filling by integrating EVs into the grid for energy delivery and exchange through battery swapping. This research, ranging from model optimization to algorithm improvement, is an important step towards solving the EVRPTW problem and improving the environment.\",\"PeriodicalId\":445710,\"journal\":{\"name\":\"Advances in Production Engineering & Management\",\"volume\":\"10 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Production Engineering & Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14743/apem2023.4.481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Production Engineering & Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14743/apem2023.4.481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对环境问题的日益关注,交通领域的温室气体(GHG)排放问题日益受到重视,而智能微电网与电动汽车(EV)的结合为解决这一问题带来了新的契机。带时间窗口的电动汽车路由问题(EVRPTW)是车辆路由问题(VRP)的扩展,通过对电动汽车进行调度,可以实现智能微电网与电动汽车的精确结合。然而,目前解决该问题的遗传算法(GA)容易陷入局部优化和迭代速度慢的困境。在本文中,我们提出了一种整数混合规划模型,该模型引入了使用时间和区域价格,以增强现实性。我们提出了 GA-A* 算法,该算法将 A* 算法和 GA 算法相结合,提高了全局搜索能力和迭代速度。我们对 16 个基准案例进行了实验,将 GA-A* 算法与传统 GA 及其他搜索算法进行了比较,结果表明 GA-A* 算法在可搜索性和最优解方面有显著提高。此外,我们还测量了电网负荷,并在模型中实现了车联网(V2G)模式,通过电池交换将电动汽车整合到电网中进行能量输送和交换,从而起到削峰填谷的作用。这项研究从模型优化到算法改进,为解决 EVRPTW 问题和改善环境迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A combined genetic algorithm and A* search algorithm for the electric vehicle routing problem with time windows
With growing environmental concerns, the focus on greenhouse gases (GHG) emissions in transportation has increased, and the combination of smart microgrids and electric vehicles (EVs) brings a new opportunity to solve this problem. Electric vehicle routing problem with time windows (EVRPTW) is an extension of the vehicle routing problem (VRP) problem, which can reach the combination of smart microgrids and EVs precisely by scheduling the EVs. However, the current genetic algorithm (GA) for solving this problem can easily fall into the dilemma of local optimization and slow iteration speed. In this paper, we present an integer hybrid planning model that introduces time of use and area price to enhance realism. We propose the GA-A* algorithm, which combines the A* algorithm and GA to improve global search capability and iteration speed. We conducted experiments on 16 benchmark cases, comparing the GA-A* algorithm with traditional GA and other search algorithms, results demonstrate significant enhancements in searchability and optimal solutions. In addition, we measured the grid load, and the model implements the vehicle-to-grid (V2G) mode, which serves as peak shaving and valley filling by integrating EVs into the grid for energy delivery and exchange through battery swapping. This research, ranging from model optimization to algorithm improvement, is an important step towards solving the EVRPTW problem and improving the environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing smart manufacturing systems using digital twin IoT-based Deep Learning Neural Network (DLNN) algorithm for voltage stability control and monitoring of solar power generation Reduction of surface defects by optimization of casting speed using genetic programming: An industrial case study Incentive modeling analysis in engineering applications and projects with stochastic duration time Comparing Fault Tree Analysis methods combined with Generalized Grey Relation Analysis: A new approach and case study in the automotive industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1