{"title":"大气压力变化对煤矿工作面煤层气排放的影响","authors":"Adam Duda","doi":"10.3390/en17010173","DOIUrl":null,"url":null,"abstract":"Increased effectiveness of methane drainage from sealed post-mining goaves in hard coal mines contributes to reduced methane emission from goaves into the mine ventilation system. This paper focuses on issues concerning the assessment of the additional amount of methane released from the goaf into mine workings during periods of atmospheric pressure drops, which can be captured with a methane drainage system. Thanks to the solutions presented in the paper, it is possible to control the efficiency of the goaf drainage system, which in turn leads to the reduction of methane emission from the mine ventilation air into Earth’s atmosphere. These solutions are of great added value for both the environment and coal mines as they reduce the costs arising from greenhouse gas emissions that are incurred by mining companies, increasing the efficiency of methane capture and its use in gas engines or district heating systems. The paper uses relationships relating to the influence of atmospheric pressure changes on the process of gas release from the goaf according to the hysteresis loop of methane release during atmospheric pressure changes, which was developed based on conducted research. The analysis and conclusions presented in this paper may facilitate the development of strategies aimed at reducing methane emissions from a mine’s ventilated air into Earth’s atmosphere.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"341 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Atmospheric Pressure Changes on Methane Emission from Goafs to Coal Mine Workings\",\"authors\":\"Adam Duda\",\"doi\":\"10.3390/en17010173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased effectiveness of methane drainage from sealed post-mining goaves in hard coal mines contributes to reduced methane emission from goaves into the mine ventilation system. This paper focuses on issues concerning the assessment of the additional amount of methane released from the goaf into mine workings during periods of atmospheric pressure drops, which can be captured with a methane drainage system. Thanks to the solutions presented in the paper, it is possible to control the efficiency of the goaf drainage system, which in turn leads to the reduction of methane emission from the mine ventilation air into Earth’s atmosphere. These solutions are of great added value for both the environment and coal mines as they reduce the costs arising from greenhouse gas emissions that are incurred by mining companies, increasing the efficiency of methane capture and its use in gas engines or district heating systems. The paper uses relationships relating to the influence of atmospheric pressure changes on the process of gas release from the goaf according to the hysteresis loop of methane release during atmospheric pressure changes, which was developed based on conducted research. The analysis and conclusions presented in this paper may facilitate the development of strategies aimed at reducing methane emissions from a mine’s ventilated air into Earth’s atmosphere.\",\"PeriodicalId\":11557,\"journal\":{\"name\":\"Energies\",\"volume\":\"341 8\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17010173\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17010173","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
The Impact of Atmospheric Pressure Changes on Methane Emission from Goafs to Coal Mine Workings
Increased effectiveness of methane drainage from sealed post-mining goaves in hard coal mines contributes to reduced methane emission from goaves into the mine ventilation system. This paper focuses on issues concerning the assessment of the additional amount of methane released from the goaf into mine workings during periods of atmospheric pressure drops, which can be captured with a methane drainage system. Thanks to the solutions presented in the paper, it is possible to control the efficiency of the goaf drainage system, which in turn leads to the reduction of methane emission from the mine ventilation air into Earth’s atmosphere. These solutions are of great added value for both the environment and coal mines as they reduce the costs arising from greenhouse gas emissions that are incurred by mining companies, increasing the efficiency of methane capture and its use in gas engines or district heating systems. The paper uses relationships relating to the influence of atmospheric pressure changes on the process of gas release from the goaf according to the hysteresis loop of methane release during atmospheric pressure changes, which was developed based on conducted research. The analysis and conclusions presented in this paper may facilitate the development of strategies aimed at reducing methane emissions from a mine’s ventilated air into Earth’s atmosphere.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.